Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Dayton, PK, Jarrell SC, Kim S, Parnell PE, Thrush SF, Hammerstrom K, Leichter JJ.  2019.  Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecological Applications. 29   10.1002/eap.1823   AbstractWebsite

Polar ecosystems are bellwether indicators of climate change and offer insights into ecological resilience. In this study, we describe contrasting responses to an apparent regime shift of two very different benthic communities in McMurdo Sound, Antarctica. We compared species-specific patterns of benthic invertebrate abundance and size between the west (low productivity) and east (higher productivity) sides of McMurdo Sound across multiple decades (1960s-2010) to depths of 60 m. We present possible factors associated with the observed changes. A massive and unprecedented shift in sponge recruitment and growth on artificial substrata observed between the 1980s and 2010 contrasts with lack of dramatic sponge settlement and growth on natural substrata, emphasizing poorly understood sponge recruitment biology. We present observations of changes in populations of sponges, bryozoans, bivalves, and deposit-feeding invertebrates in the natural communities on both sides of the sound. Scientific data for Antarctic benthic ecosystems are scant, but we gather multiple lines of evidence to examine possible processes in regional-scale oceanography during the eight years in which the sea ice did not clear out of the southern portion of McMurdo Sound. We suggest that large icebergs blocked currents and advected plankton, allowed thicker multi-year ice, and reduced light to the benthos. This, in addition to a possible increase in iron released from rapidly melting glaciers, fundamentally shifted the quantity and quality of primary production in McMurdo Sound. A hypothesized shift from large to small food particles is consistent with increased recruitment and growth of sponges on artificial substrata, filter-feeding polychaetes, and some bryozoans, as well as reduced populations of bivalves and crinoids that favor large particles, and echinoderms Sterechinus neumayeri and Odontaster validus that predominantly feed on benthic diatoms and large phytoplankton mats that drape the seafloor after spring blooms. This response of different guilds of filter feeders to a hypothesized shift from large to small phytoplankton points to the enormous need for and potential value of holistic monitoring programs, particularly in pristine ecosystems, that could yield both fundamental ecological insights and knowledge that can be applied to critical conservation concerns as climate change continues.

Dayton, P, Jarrell S, Kim S, Thrush S, Hammerstrom K, Slattery M, Parnell E.  2016.  Surprising episodic recruitment and growth of Antarctic sponges: Implications for ecological resilience. Journal of Experimental Marine Biology and Ecology. 482:38-55.   10.1016/j.jembe.2016.05.001   AbstractWebsite

Sponges are the most conspicuous component of the Antarctic benthic ecosystem, a system under stress both from climate change and fishing activities. Observations over four decades are compiled and reveal extremely episodic sponge recruitment and growth. Recruitment occurred under different oceanographic conditions on both sides of McMurdo Sound. Most of the sponges appear to have recruited in the late 1990s-2000. Observations from 2000 to 2010 follow thirty years of relative stasis with very little sponge recruitment or growth followed by a general pattern of recruitment by some forty species of sponges. That there was almost no recruitment observed on natural substrata emphasizes the contrast between potential and realized recruitment This unique data set was derived from a region noted for physical stasis, but the episodic ecological phenomena highlight the importance of rare events. Against a background of intermittent food resources and the low metabolic costs of stasis, understanding the causes of irregular larval supply, dispersal processes, recruitment success and survivorship becomes critical to predicting ecosystem dynamics and resilience in response to increasing environmental change. Our time-series emphasizes that long-term data collection is essential for meaningful forecasts about environmental change in the unique benthic ecosystems of the Antarctic shelf. (C) 2016 Elsevier B.V. All rights reserved.

Dayton, PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, O'Connor K, Barber JS, Robilliard G, Barry J, Thurber AR, Conlan K.  2013.  Recruitment, Growth and Mortality of an Antarctic Hexactinellid Sponge, Anoxycalyx joubini. PLOS One. 8   10.1371/journal.pone.0056939   AbstractWebsite

Polar ecosystems are sensitive to climate forcing, and we often lack baselines to evaluate changes. Here we report a nearly 50-year study in which a sudden shift in the population dynamics of an ecologically important, structure-forming hexactinellid sponge, Anoxycalyx joubini was observed. This is the largest Antarctic sponge, with individuals growing over two meters tall. In order to investigate life history characteristics of Antarctic marine invertebrates, artificial substrata were deployed at a number of sites in the southern portion of the Ross Sea between 1967 and 1975. Over a 22-year period, no growth or settlement was recorded for A. joubini on these substrata; however, in 2004 and 2010, A. joubini was observed to have settled and grown to large sizes on some but not all artificial substrata. This single settlement and growth event correlates with a region-wide shift in phytoplankton productivity driven by the calving of a massive iceberg. We also report almost complete mortality of large sponges followed over 40 years. Given our warming global climate, similar system-wide changes are expected in the future.

Thrush, S, Dayton P, Cattaneo-Vietti R, Chiantore M, Cummings V, Andrew N, Hawes I, Kim S, Kvitek R, Schwarz AM.  2006.  Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 53:959-971.   10.1016/j.dsr2.2006.02.006   AbstractWebsite

Early ecological research in McMurdo Sound revealed local spatial gradients in community structure associated with variations in anchor ice disturbance, fast ice and snow cover, and the effects of predators. Research contrasting the cast and west sides of McMurdo Sound has shown major differences in benthic communities, which have been attributed to oceanographic influences on the advection of water-column productivity and the frequency of fast ice break-out. Despite these regional and local differences, coastal benthic communities in McMurdo Sound show a high level of stability, and contain a variety of large and potentially very long-lived species. In Terra Nova Bay, about half way along the Victoria Land Coast of the western Ross Sea, the coastal benthic communities provide some insightful contrasts with those in McMurdo Sound. For example, the abundance and depth distribution of dominant species such as Sterechinus neumayeri and Adamussium colbecki are markedly different from McMurdo Sound. In both locations communities dominated by large sponges are most prolific in regions that are free from iceberg disturbance of the seabed. A recent assessment of northern Victoria Land coastal benthic communities, in conjunction with multibeam imagery of the seafloor, further highlights the importance of iceberg disturbance in structuring Antarctic benthic communities. A comparative synthesis of these coastal ecological studies enables us to generate hypotheses concerning the relative importance of different environmental drivers in structuring benthic communities. Overlain on the regular latitudinal shifts in physical factors such as light regime, are regional fluctuations that are controlled by atmospheric and oceanographic circulation patterns and coastal topography/bathymetry. Change in diversity along the western coast of the Ross Sea is predicted to be influenced by three main factors (1) ice disturbance (e.g., via anchor ice and advection of supercooled water or icebergs), (2) photosynthetically available radiation (affected by ice and snow cover and water clarity), (3) the locations of polynyas and advection of planktonic production and larvae. Interactions between these factors are expected to result in non-linear changes along the latitudinal gradient. While predictions generated from these hypotheses remain to be rigorously tested, they provide indications of how benthic communities may respond to changes in production, disturbance and the stability of coastal sea ice. (c) 2006 Elsevier Ltd. All rights reserved.