Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Bromirski, PD, Cayan DR.  2015.  Wave power variability and trends across the North Atlantic influenced by decadal climate patterns. Journal of Geophysical Research-Oceans. 120:3419-3443.   10.1002/2014jc010440   AbstractWebsite

Climate variations influence North Atlantic winter storm intensity and resultant variations in wave energy levels. A 60 year hindcast allows investigation of the influence of decadal climate variability on long-term trends of North Atlantic wave power, P-W, spanning the 1948-2008 epoch. P-W variations over much of the eastern North Atlantic are strongly influenced by the fluctuating North Atlantic Oscillation (NAO) atmospheric circulation pattern, consistent with previous studies of significant wave height, Hs. Wave activity in the western Atlantic also responds to fluctuations in Pacific climate modes, including the Pacific North American (PNA) pattern and the El Nino/Southern Oscillation. The magnitude of upward long-term trends during winter over the northeast Atlantic is strongly influenced by heightened storm activity under the extreme positive phase of winter NAO in the early 1990s. In contrast, P-W along the United States East Coast shows no increasing trend, with wave activity there most closely associated with the PNA. Strong wave power events exhibit significant upward trends along the Atlantic coasts of Iceland and Europe during winter months. Importantly, in opposition to the long-term increase of P-W, a recent general decrease in P-W across the North Atlantic from 2000 to 2008 occurred. The 2000-2008 decrease was associated with a general shift of winter NAO to its negative phase, underscoring the control exerted by fluctuating North Atlantic atmospheric circulation on P-W trends.

Bromirski, PD, Flick RE, Cayan DR.  2003.  Storminess variability along the California coast: 1858-2000. Journal of Climate. 16:982-993.   10.1175/1520-0442(2003)016<0982:svatcc>;2   AbstractWebsite

The longest available hourly tide gauge record along the West Coast (U. S.) at San Francisco yields meteorologically forced nontide residuals (NTR), providing an estimate of the variation in "storminess'' from 1858 to 2000. Mean monthly positive NTR (associated with low sea level pressure) show no substantial change along the central California coast since 1858 or over the last 50 years. However, in contrast, the highest 2% of extreme winter NTR levels exhibit a significant increasing trend since about 1950. Extreme winter NTR also show pronounced quasi-periodic decadal-scale variability that is relatively consistent over the last 140 years. Atmospheric sea level pressure anomalies (associated with years having high winter NTR) take the form of a distinct, large-scale atmospheric circulation pattern, with intense storminess associated with a broad, southeasterly displaced, deep Aleutian low that directs storm tracks toward the California coast.