Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Bromirski, PD, Cayan DR.  2015.  Wave power variability and trends across the North Atlantic influenced by decadal climate patterns. Journal of Geophysical Research-Oceans. 120:3419-3443.   10.1002/2014jc010440   AbstractWebsite

Climate variations influence North Atlantic winter storm intensity and resultant variations in wave energy levels. A 60 year hindcast allows investigation of the influence of decadal climate variability on long-term trends of North Atlantic wave power, P-W, spanning the 1948-2008 epoch. P-W variations over much of the eastern North Atlantic are strongly influenced by the fluctuating North Atlantic Oscillation (NAO) atmospheric circulation pattern, consistent with previous studies of significant wave height, Hs. Wave activity in the western Atlantic also responds to fluctuations in Pacific climate modes, including the Pacific North American (PNA) pattern and the El Nino/Southern Oscillation. The magnitude of upward long-term trends during winter over the northeast Atlantic is strongly influenced by heightened storm activity under the extreme positive phase of winter NAO in the early 1990s. In contrast, P-W along the United States East Coast shows no increasing trend, with wave activity there most closely associated with the PNA. Strong wave power events exhibit significant upward trends along the Atlantic coasts of Iceland and Europe during winter months. Importantly, in opposition to the long-term increase of P-W, a recent general decrease in P-W across the North Atlantic from 2000 to 2008 occurred. The 2000-2008 decrease was associated with a general shift of winter NAO to its negative phase, underscoring the control exerted by fluctuating North Atlantic atmospheric circulation on P-W trends.

2013
Bromirski, PD, Cayan DR, Helly J, Wittmann P.  2013.  Wave power variability and trends across the North Pacific. Journal of Geophysical Research-Oceans. 118:6329-6348.   10.1002/2013jc009189   AbstractWebsite

Multiyear climate variations influence North Pacific storm intensity and resultant variations in wave energy levels. The timing of these decadal fluctuations and strong El Nino's have had a strong influence on long-term trends. Here we investigate variations in the North Pacific wave power, P-W, determined from WAVEWATCH III (WW3) wave model significant wave height, Hs, and peak period data forced by NRA-1 winds spanning the 1948-2008 epoch. Over the entire hindcast, upward trends in Hs and P-W, especially in winter, are observed over much of the North Pacific, strongly influenced by an apparent storm intensification after the mid-1970s regime shift. Heightened P-W is concentrated in particular regions of the basin, and is associated with increased wave activity during the warm phase of the Pacific Decadal Oscillation (PDO). Wave power events, P-E, defined as episodes when Hs exceeded the 90th percentile threshold for at least 12 h, exhibit significant upward trends along much of the U.S. Pacific coast during winter months. Importantly, the hindcast exhibits a recent decrease in P-W across much of the North Pacific, in contrast to the long-term increase of P-W and Hs. This recent decrease is associated with the prevalent PDO cool phase that developed after the late 1990s. Variability and intensification of coastal P-W and P-E have important practical implications for shoreline and beach erosion, coastal wetlands inundation, storm-surge flooding, and coastal planning. These considerations will become increasingly important as sea level rises.