Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
White-Gaynor, AL, Nyblade AA, Aster RC, Wiens DA, Bromirski PD, Gerstoft P, Stephen RA, Hansen SE, Wilson T, Dalziel IW, Huerta AD, Winberry JP, Anandakrishnan S.  2019.  Heterogeneous upper mantle structure beneath the Ross Sea Embayment and Marie Byrd Land, West Antarctica, revealed by P-wave tomography. Earth and Planetary Science Letters. 513:40-50.   10.1016/j.epsl.2019.02.013   AbstractWebsite

We present an upper mantle P-wave velocity model for the Ross Sea Embayment (RSE) region of West Antarctica, constructed by inverting relative P-wave travel-times from 1881 teleseismic earthquakes recorded by two temporary broadband seismograph deployments on the Ross Ice Shelf, as well as by regional ice- and rock-sited seismic stations surrounding the RSE. Faster upper mantle P-wave velocities (similar to +1%) characterize the eastern part of the RSE, indicating that the lithosphere in this part of the RSE may not have been reheated by mid-to-late Cenozoic rifting that affected other parts of the Late Cretaceous West Antarctic Rift System. Slower upper mantle velocities (similar to -1%) characterize the western part of the RSE over a similar to 500 km-wide region, extending from the central RSE to the Transantarctic Mountains (TAM). Within this region, the model shows two areas of even slower velocities (similar to -1.5%) centered beneath Mt. Erebus and Mt. Melbourne along the TAM front. We attribute the broader region of slow velocities mainly to reheating of the lithospheric mantle by Paleogene rifting, while the slower velocities beneath the areas of recent volcanism may reflect a Neogene-present phase of rifting and/or plume activity associated with the formation of the Terror Rift. Beneath the Ford Ranges and King Edward VII Peninsula in western Marie Byrd Land, the P-wave model shows lateral variability in upper mantle velocities of +/- 0.5% over distances of a few hundred km. The heterogeneity in upper mantle velocities imaged beneath the RSE and western Marie Byrd Land, assuming no significant variation in mantle composition, indicates variations in upper mantle temperatures of at least 100 degrees C. These temperature variations could lead to differences in surface heat flow of similar to +/- 10 mW/m(2) and mantle viscosity of 10(2) Pa s regionally across the study area, possibly influencing the stability of the West Antarctic Ice Sheet by affecting basal ice conditions and glacial isostatic adjustment. (C) 2019 Elsevier B.V. All rights reserved.

Chaput, J, Aster RC, McGrath D, Baker M, Anthony RE, Gerstoft P, Bromirski P, Nyblade A, Stephen RA, Wiens DA, Das SB, Stevens LA.  2018.  Near-surface environmentally forced changes in the Ross Ice Shelf observed with ambient seismic noise. Geophysical Research Letters. 45:11187-11196.   10.1029/2018gl079665   AbstractWebsite

Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambient resonances at frequencies >5 Hz. These firn-trapped surface wave signals arise through wind and snow bedform interactions coupled with very low velocity structures. Progressive and long-term spectral changes are associated with surface snow redistribution by wind and with a January 2016 regional melt event. Modeling demonstrates high spectral sensitivity to near-surface (top several meters) elastic parameters. We propose that spectral peak changes arise from surface snow redistribution in wind events and to velocity drops reflecting snow lattice weakening near 0 degrees C for the melt event. Percolation-related refrozen layers and layer thinning may also contribute to long-term spectral changes after the melt event. Single-station observations are inverted for elastic structure for multiple stations across the ice shelf. High-frequency ambient noise seismology presents opportunities for continuous assessment of near-surface ice shelf or other firn environments. Plain Language Summary Ice shelves are the floating buttresses of large glaciers that extend over the oceans and play a key role in restraining inland glaciers as they flow to the sea. Deploying sensitive seismographs across Earth's largest ice shelf (the Ross Ice Shelf) for 2 years, we discovered that the shelf nearly continuously sings at frequencies of five or more cycles per second, excited by local and regional winds blowing across its snow dune-like topography. We find that the frequencies and other features of this singing change, both as storms alter the snow dunes and during a (January 2016) warming event that resulted in melting in the ice shelf's near surface. These observations demonstrate that seismological monitoring can be used to continually monitor the near-surface conditions of an ice shelf and other icy bodies to depths of several meters.

Chen, Z, Bromirski PD, Gerstoft P, Stephen RA, Wiens DA, Aster RC, Nyblade AA.  2018.  Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves. Journal of Glaciology. 64:730-744.   10.1017/jog.2018.66   AbstractWebsite

Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (similar to 70 m s(-1)). In the 20-100 mHz band, extensional Lamb waves dominate and propagate at phase speeds similar to 3 km s(-1). Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20-100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation.

Shen, WS, Wiens DA, Anandakrishnan S, Aster RC, Gerstoft P, Bromirski PD, Hansen SE, Dalziel IWD, Heeszel DS, Huerta AD, Nyblade AA, Stephen R, Wilson TJ, Winberry JP.  2018.  The crust and upper mantle structure of central and west Antarctica from bayesian inversion of rayleigh wave and receiver functions. Journal of Geophysical Research-Solid Earth. 123:7824-7849.   10.1029/2017jb015346   AbstractWebsite

We construct a new seismic model for central and West Antarctica by jointly inverting Rayleigh wave phase and group velocities along with P wave receiver functions. Ambient noise tomography exploiting data from more than 200 seismic stations deployed over the past 18years is used to construct Rayleigh wave phase and group velocity dispersion maps. Comparison between the ambient noise phase velocity maps with those constructed using teleseismic earthquakes confirms the accuracy of both results. These maps, together with P receiver function waveforms, are used to construct a new 3-D shear velocity (Vs) model for the crust and uppermost mantle using a Bayesian Monte Carlo algorithm. The new 3-D seismic model shows the dichotomy of the tectonically active West Antarctica (WANT) and the stable and ancient East Antarctica (EANT). In WANT, the model exhibits a slow uppermost mantle along the Transantarctic Mountains (TAMs) front, interpreted as the thermal effect from Cenozoic rifting. Beneath the southern TAMs, the slow uppermost mantle extends horizontally beneath the traditionally recognized EANT, hypothesized to be associated with lithospheric delamination. Thin crust and lithosphere observed along the Amundsen Sea coast and extending into the interior suggest involvement of these areas in Cenozoic rifting. EANT, with its relatively thick and cold crust and lithosphere marked by high Vs, displays a slower Vs anomaly beneath the Gamburtsev Subglacial Mountains in the uppermost mantle, which we hypothesize may be the signature of a compositionally anomalous body, perhaps remnant from a continental collision.

Diez, A, Bromirski PD, Gerstoft P, Stephen RA, Anthony RE, Aster RC, Cai C, Nyblade A, Wiens DA.  2016.  Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica. Geophysical Journal International. 205:785-795.   10.1093/gji/ggw036   AbstractWebsite

An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to similar to 150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

Bromirski, PD, Diez A, Gerstoft P, Stephen RA, Bolmer T, Wiens DA, Aster RC, Nyblade A.  2015.  Ross Ice Shelf vibrations. Geophysical Research Letters. 42:7589-7597.   10.1002/2015gl065284   AbstractWebsite

Broadband seismic stations were deployed across the Ross Ice Shelf (RIS) in November 2014 to study ocean gravity wave-induced vibrations. Initial data from three stations 100km from the RIS front and within 10km of each other show both dispersed infragravity (IG) wave and ocean swell-generated signals resulting from waves that originate in the North Pacific. Spectral levels from 0.001 to 10Hz have the highest accelerations in the IG band (0.0025-0.03Hz). Polarization analyses indicate complex frequency-dependent particle motions, with energy in several frequency bands having distinctly different propagation characteristics. The dominant IG band signals exhibit predominantly horizontal propagation from the north. Particle motion analyses indicate retrograde elliptical particle motions in the IG band, consistent with these signals propagating as Rayleigh-Lamb (flexural) waves in the ice shelf/water cavity system that are excited by ocean wave interactions nearer the shelf front.