Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
Toomey, DR, Allen RM, Barclay AH, Bell SW, Bromirski PD, Carlson RL, Chen XW, Collins JA, Dziak RP, Evers B, Forsyth DW, Gerstoft P, Hooft EEE, Livelybrooks D, Lodewyk JA, Luther DS, McGuire JJ, Schwartz SY, Tolstoy M, Trehu AM, Weirathmueller M, Wilcock WSD.  2014.  The Cascadia Initiative: A sea change in seismological studies of subduction zones. Oceanography. 27:138-150. AbstractWebsite

Increasing public awareness that the Cascadia subduction zone in the Pacific Northwest is capable of great earthquakes (magnitude 9 and greater) motivates the Cascadia Initiative, an ambitious onshore/offshore seismic and geodetic experiment that takes advantage of an amphibious array to study questions ranging from megathrust earthquakes, to volcanic arc structure, to the formation, deformation and hydration of the Juan De Fuca and Gorda Plates. Here, we provide an overview of the Cascadia Initiative, including its primary science objectives, its experimental design and implementation, and a preview of how the resulting data are being used by a diverse and growing scientific community. The Cascadia Initiative also exemplifies how new technology and community-based experiments are opening up frontiers for marine science. The new technology shielded ocean bottom seismometers is allowing more routine investigation of the source zone of megathrust earthquakes, which almost exclusively lies offshore and in shallow water. The Cascadia Initiative offers opportunities and accompanying challenges to a rapidly expanding community of those who use ocean bottom seismic data.

Traer, J, Gerstoft P, Bromirski PD, Hodgkiss WS, Brooks LA.  2008.  Shallow-water seismoacoustic noise generated by tropical storms Ernesto and Florence. Journal of the Acoustical Society of America. 124:EL170-EL176.   10.1121/1.2968296   AbstractWebsite

Land-based seismic observations of double frequency (DF) microseisms generated during tropical storms Ernesto and Florence are dominated by signals in the 0.15-0.5 Hz band. In contrast, data from sea floor hydrophones in shallow water (70 m depth, 130 km off the New Jersey coast) show dominant signals in the ocean gravity-wave frequency band, 0.02-0.18 Hz, and low amplitudes from 0.18 to 0.3 Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Florence produced large waves. over deep water while Ernesto only generated waves in coastal regions, yet both storms produced similar spectra. This suggests near-coastal shallow water as the dominant region for observed microseism generation. (C) 2008 Acoustical Society of America.

Traer, J, Gerstoft P, Bromirski PD, Shearer PM.  2012.  Microseisms and hum from ocean surface gravity waves. Journal of Geophysical Research-Solid Earth. 117   10.1029/2012jb009550   AbstractWebsite

Ocean waves incident on coasts generate seismic surface waves in three frequency bands via three pathways: direct pressure on the seafloor (primary microseisms, PM), standing waves from interaction of incident and reflected waves (double-frequency microseisms, DF), and swell-transformed infragravity wave interactions (the Earth's seismic hum). Beamforming of USArray seismic data shows that the source azimuths of the generation regions of hum, PM and DF microseisms vary seasonally, consistent with hemispheric storm patterns. The correlation of beam power with wave height over all azimuths is highest in near-coastal waters. Seismic signals generated by waves from Hurricane Irene and from a storm in the Southern Ocean have good spatial and temporal correlation with nearshore wave height and peak period for all three wave-induced seismic signals, suggesting that ocean waves in shallow water commonly excite hum (via infragravity waves), PM, and DF microseisms concurrently.