Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Cayan, DR, Bromirski PD, Hayhoe K, Tyree M, Dettinger MD, Flick RE.  2008.  Climate change projections of sea level extremes along the California coast. Climatic Change. 87:S57-S73.   10.1007/s10584-007-9376-7   AbstractWebsite

California's coastal observations and global model projections indicate that California's open coast and estuaries will experience rising sea levels over the next century. During the last several decades, the upward historical trends, quantified from a small set of California tide gages, have been approximately 20 cm/century, quite similar to that estimated for global mean sea level. In the next several decades, warming produced by climate model simulations indicates that sea level rise (SLR) could substantially exceed the rate experienced during modem human development along the California coast and estuaries. A range of future SLR is estimated from a set of climate simulations governed by lower (B1), middle-upper (A2), and higher (A1fi) GHG emission scenarios. Projecting SLR from the ocean warming in GCMs, observational evidence of SLR, and separate calculations using a simple climate model yields a range of potential sea level increases, from 11 to 72 cm, by the 2070-2099 period. The combination of predicted astronomical tides with projected weather forcing, El Nino related variability, and secular SLR, gives a series of hourly sea level projections for 2005-2100. Gradual sea level rise progressively worsens the impacts of high tides, surge and waves resulting from storms, and also freshwater floods from Sierra and coastal mountain catchments. The occurrence of extreme sea levels is pronounced when these factors coincide. The frequency and magnitude of extreme events, relative to current levels, follows a sharply escalating pattern as the magnitude of future sea level rise increases.

Chaput, J, Aster RC, McGrath D, Baker M, Anthony RE, Gerstoft P, Bromirski P, Nyblade A, Stephen RA, Wiens DA, Das SB, Stevens LA.  2018.  Near-surface environmentally forced changes in the Ross Ice Shelf observed with ambient seismic noise. Geophysical Research Letters. 45:11187-11196.   10.1029/2018gl079665   AbstractWebsite

Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambient resonances at frequencies >5 Hz. These firn-trapped surface wave signals arise through wind and snow bedform interactions coupled with very low velocity structures. Progressive and long-term spectral changes are associated with surface snow redistribution by wind and with a January 2016 regional melt event. Modeling demonstrates high spectral sensitivity to near-surface (top several meters) elastic parameters. We propose that spectral peak changes arise from surface snow redistribution in wind events and to velocity drops reflecting snow lattice weakening near 0 degrees C for the melt event. Percolation-related refrozen layers and layer thinning may also contribute to long-term spectral changes after the melt event. Single-station observations are inverted for elastic structure for multiple stations across the ice shelf. High-frequency ambient noise seismology presents opportunities for continuous assessment of near-surface ice shelf or other firn environments. Plain Language Summary Ice shelves are the floating buttresses of large glaciers that extend over the oceans and play a key role in restraining inland glaciers as they flow to the sea. Deploying sensitive seismographs across Earth's largest ice shelf (the Ross Ice Shelf) for 2 years, we discovered that the shelf nearly continuously sings at frequencies of five or more cycles per second, excited by local and regional winds blowing across its snow dune-like topography. We find that the frequencies and other features of this singing change, both as storms alter the snow dunes and during a (January 2016) warming event that resulted in melting in the ice shelf's near surface. These observations demonstrate that seismological monitoring can be used to continually monitor the near-surface conditions of an ice shelf and other icy bodies to depths of several meters.

Chen, Z, Gerstoft P, Bromirski PD.  2016.  Microseism source direction from noise cross-correlation. Geophysical Journal International. 205:810-818.   10.1093/gji/ggw055   AbstractWebsite

Inhomogeneous noise sources surrounding stations produce asymmetric amplitudes in cross-correlation functions that yield preferential source directions. Here we show that preprocessing biases the dominant source direction estimate towards the source producing long-duration signals by down-weighting high-amplitude signals. Tests with both synthetic data and observations show that conventional preprocessing, where only earthquakes and local transients (e.g. trawling, fish impacts) are removed, is more sensitive to coherent energy, while one-bit preprocessing and running-absolute-mean preprocessing are more influenced by signal duration. Comparisons between different preprocessing methods are made on data from the Cascadia Initiative ocean bottom seismometer array, where we find that the total energy arriving from pelagic and coastal areas is similar. Moreover, pelagic-generated signals tend to be weaker but have longer duration, in contrast to coastal-generated signals that tend to be stronger but have shorter duration.

Chen, Z, Bromirski PD, Gerstoft P, Stephen RA, Wiens DA, Aster RC, Nyblade AA.  2018.  Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves. Journal of Glaciology. 64:730-744.   10.1017/jog.2018.66   AbstractWebsite

Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (similar to 70 m s(-1)). In the 20-100 mHz band, extensional Lamb waves dominate and propagate at phase speeds similar to 3 km s(-1). Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20-100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation.

Costa-Cabral, M, Rath JS, Mills WB, Roy SB, Bromirski PD, Milesi C.  2016.  Projecting and forecasting winter precipitation extremes and meteorological drought in California using the North Pacific high sea level pressure anomaly. Journal of Climate. 29:5009-5026.   10.1175/jcli-d-15-0525.1   AbstractWebsite

Large-scale climatic indices have been used as predictors of precipitation totals and extremes in many studies and are used operationally in weather forecasts to circumvent the difficulty in obtaining robust dynamical simulations of precipitation. The authors show that the sea level pressure North Pacific high (NPH) wintertime anomaly, a component of the Northern Oscillation index (NOI), provides a superior covariate of interannual precipitation variability in Northern California, including seasonal precipitation totals, drought, and extreme precipitation intensity, compared to traditional ENSO indices such as the Southern Oscillation index (SOI), the multivariate ENSO index (MEI), NiNo-3.4, and others. Furthermore, the authors show that the NPH anomaly more closely reflects the influence of Pacific basin conditions over California in general, over groups of stations used to characterize statewide precipitation in the Sierra Nevada range, and over the southern San Francisco Bay region (NASA Ames Research Center). This paper uses the term prediction to refer to the estimation of precipitation (the predictand) from a climate covariate (the predictor), such as a climate index, or atmospheric moisture. In this sense, predictor and predictand are simultaneous in time. Statistical models employed show the effectiveness of the NPH winter anomaly as a predictor of total winter precipitation and daily precipitation extremes at the Moffett Field station. NPH projected by global climate models is also used in conjunction with atmospheric humidity [atmospheric specific humidity (HUS) at the 850-hPa level] to obtain projections of mean and extreme precipitation. The authors show that future development of accurate forecasts of NPH anomalies issued several months in advance is important for forecasting total winter precipitation and is expected to directly benefit water resource management in California. Therefore, the authors suggest that investigating the lead-time predictability of NPH anomalies is an important direction for future research.