Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
R
Blum, JA, Nooner SL, Zumberge MA.  2008.  Recording Earth strain with optical fibers. IEEE Sensors Journal. 8:1152-1160.   10.1109/jsen.2008.926882   AbstractWebsite

Optical fibers are well suited to measure Earth strain because they can be stretched over long distances to average strain over a large interval. This is important to reduce disturbances to the measurement from very local effects. We have installed optical fibers ranging in length from a few 10s of meters to 2 km in vertical boreholes on land and in an icesheet, and horizontally along the sea floor. Due to the high sensitivity of optical fibers to temperature change, an environment of stable temperature is important-this is often available in boreholes or on the sea floor. Longevity of fiber cables and the means to protect the glass fibers from environmental effects and the rigors of deployment are critical issues. Our experiences cover a broad range of success in this regard, with some deployments lasting for more than four years and others failing immediately.

Zumberge, MA, Berger J, Dzieciuch MA, Parker RL.  2004.  Resolving quadrature fringes in real time. Applied Optics. 43:771-775.   10.1364/ao.43.000771   AbstractWebsite

In many interferometers, two fringe signals can be generated in quadrature. The relative phase of the two fringe signals depends on whether the optical path length is increasing or decreasing. A system is developed in which two quadrature fringe signals are digitized and analyzed in real time with a digital signal processor to yield a linear, high-resolution, wide-dynamic-range displacement transducer. The resolution in a simple Michelson interferometer with inexpensive components is 5 X 10(-13) m Hz(-1/2) at 2 Hz. (C) 2004 Optical Society of America.

Zumberge, MA, Faller JE, Gschwind J.  1983.  Results from an Absolute Gravity Survey in the United-States. Journal of Geophysical Research. 88:7495-7502.   10.1029/JB088iB09p07495   AbstractWebsite

Using the recently completed JILA absolute gravity meter, we made an absolute gravity survey which covered 12 sites in the United States. Over a period of 8 weeks, the instrument was driven a total distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland, and Massachusetts. The time spent in carrying out a measurement at a single location was typically 1 day. A measurement accuracy of around 1×10−7 m/s2 (10 μGal) is believed to have been obtained at each of the sites.

Arnautov, G, Boulanger Y, Cannizzo L, Cerutti G, Faller J, Feng Y-Y, Groten E, Guo Y, Hollander W, Huang D-L, Kalish E, Marson I, Niebauer T, Sakuma A, Sasagawa G, Schleglov S, Stus Y, Tarasiuk W, Ahang G-Y, Zhou J-H, Zumberge M.  1987.  Results of the Second International Comparison of Absolute Gravimeters in Sevres 1985. Bull. D'Information. 59 Abstract
n/a