We have developed a calibrated, simple time-lapse seismic method for estimating saturation changes from the CO2-storage project at Sleipner offshore Norway. This seismic method works well to map changes when CO2 is migrating laterally away from the injection point. However, it is challenging to detect changes occurring below CO2 layers that have already been charged by some CO2. Not only is this partly caused by the seismic shadow effects, but also by the fact that the velocity sensitivity for CO2 change in saturation from 0.3 to 1.0 is significantly less than saturation changes from zero to 0.3. To circumvent the seismic shadow zone problem, we combine the time-lapse seismic method with time-lapse gravity measurements. This is done by a simple forward modeling of gravity changes based on the seismically derived saturation changes, letting these saturation changes be scaled by an arbitrary constant and then by minimizing the least-squares error to obtain the best fit between the scaled saturation changes and the measured time-lapse gravity data. In this way, we are able to exploit the complementary properties of time-lapse seismic and gravity data.

%Z n/a %8 2017/05 %9 Article %@ 2324-8858