Publications

Export 10 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Cape, MR, Vernet M, Skvarca P, Marinsek S, Scambos T, Domack E.  2015.  Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. Journal of Geophysical Research-Atmospheres. 120(21):11037-11057.   10.1002/2015JD023465   Abstract

Rapid warming of the Antarctic Peninsula over the past several decades has led to extensive surface melting on its eastern side, and the disintegration of the Prince Gustav, Larsen A, and Larsen B ice shelves. The warming trend has been attributed to strengthening of circumpolar westerlies resulting from a positive trend in the Southern Annular Mode (SAM), which is thought to promote more frequent warm, dry, downsloping foehn winds along the lee, or eastern side, of the peninsula. We examined variability in foehn frequency and its relationship to temperature and patterns of synoptic-scale circulation using a multidecadal meteorological record from the Argentine station Matienzo, located between the Larsen A and B embayments. This record was further augmented with a network of six weather stations installed under the U.S. NSF LARsen Ice Shelf System, Antarctica, project. Significant warming was observed in all seasons at Matienzo, with the largest seasonal increase occurring in austral winter (+3.71 degrees C between 1962-1972 and 1999-2010). Frequency and duration of foehn events were found to strongly influence regional temperature variability over hourly to seasonal time scales. Surface temperature and foehn winds were also sensitive to climate variability, with both variables exhibiting strong, positive correlations with the SAM index. Concomitant positive trends in foehn frequency, temperature, and SAM are present during austral summer, with sustained foehn events consistently associated with surface melting across the ice sheet and ice shelves. These observations support the notion that increased foehn frequency played a critical role in precipitating the collapse of the Larsen B ice shelf.

Helly, JJ, Vernet M, Murray AE, Stephenson GR.  2015.  Characteristics of the meltwater field from a large Antarctic iceberg using delta O-18. Journal of Geophysical Research-Oceans. 120:2259-2269.   10.1002/2015jc010772   AbstractWebsite

Large tabular icebergs represent a disruptive influence on a stable water column when drifting in the open ocean. This is a study of one iceberg, C18A, encountered in the Powell Basin in the Weddell Sea in March 2009, formed from iceberg C18 ( 76x7km) originating from the Ross Ice Shelf in May 2002. C18A was lunate in shape with longest dimensions of 31kmx7kmx184m. The meltwater field from C18A was characterized using 18O from water samples collected near C18A (Near-field, 0.4-2 km) and contrasted with a Far-field comprised of samples from an Away site (19 km from C18A), a Control site (70 km away), and a region populated with small icebergs (Iceberg Alley, 175 km away). The in-sample fractions of meteoric water were calculated relative 18O in iceberg ice and Weddell Deep Water and converted to meteoric water height (m) and a percentage within 100 m depth bins. The Near-field and Far-field difference from surface to 200 m was 0.510.28%. The concentration of meteoric water dropped to approximately half that value below 200 m, approximate keel depth of the iceberg, although detectable to 600 m. From surface to 600 m, the overall difference was statistically significant ( P<0.0001). From this, we estimate the Near-field volume astern of the iceberg ( 0.16km3d-1) as a continuous source of meteoric water.

2012
Ferrario, ME, Cefarelli AO, Robison B, Vernet M.  2012.  Thalassioneis signyensis (Bacillariophyceae) from northwest Weddell Sea icebergs, an emendation of the generic description. Journal of Phycology. 48:222-230.   10.1111/j.1529-8817.2011.01097.x   AbstractWebsite

We offer an emended description of the genus Thalassioneis based on new observations of the type species, T. signyensis Round, from material sampled in the northwest Weddell Sea. Specimens from algal communities attached to submerged flanks of several icebergs were collected with a remote-operated vehicle (ROV-Phantom DS 2). The analyses were carried out by LM and SEM. Fresh material and frustules without organic matter allowed us to observe details not included in the original description such as type and structure of colonies and chloroplasts. The frustule shows an asymmetry with respect to the location of the apical pore fields, one of them situated on the valvar face and the other one displaced toward the mantle; the former is involved in joining contiguous cells to form long chains. Furthermore, we present details on the ultrastructure of the cingulum that consists of three to four open copulae with one or more rows of poroids. A brief discussion on the habit and ecology of this taxon, which may be endemic to the northwest Weddell Sea, is also presented. A comparison with similar genera, such as Brandinia, Creania, Fossula, Fragilaria, Rimoneis, Synedropsis, and Ulnaria, is included with an evaluation of morphological characteristics useful to differentiate them.

2011
Robison, BH, Vernet M, Smith KL.  2011.  Algal communities attached to free-drifting, Antarctic icebergs. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 58:1451-1456.   10.1016/j.dsr2.2010.11.024   AbstractWebsite

Disintegration of the Antarctic Peninsula's eastern ice shelves has increased the population of icebergs traversing the Weddell Sea, but until recently little was known about their ecological impact on the pelagic environment. Here we describe a class of algal communities that occur on the submerged flanks of large, free-drifting, glacially-derived tabular icebergs. We used remotely operated vehicles to examine these icebergs directly for the first time, to survey the algal communities and collect material for shipboard laboratory studies. The communities, principally diatoms, were associated with a characteristic cupped configuration of the ice surface, and they served as feeding sites for aggregations of Antarctic krill. Production rate measurements indicate that these communities are providing a substantial contribution to regional primary production in summer. As the number of icebergs grows, the number of algae communities may also be increasing, along with their cumulative contribution to organic carbon flux. (C) 2010 Elsevier Ltd. All rights reserved.

Smith, KL, Sherman AD, Shaw TJ, Murray AE, Vernet M, Cefarelli AO.  2011.  Carbon export associated with free-drifting icebergs in the Southern Ocean. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 58:1485-1496.   10.1016/j.dsr2.2010.11.027   AbstractWebsite

Enrichment of the pelagic ecosystem associated with the proliferation of free-drifting icebergs prompts questions about increased productivity and the export flux of organic carbon to the deep ocean with continued climate warming. Lagrangian Sediment Traps (LST) were deployed autonomously beneath a large tabular, free-drifting iceberg (C-18a) in the NW Weddell Sea during March and April 2009 to collect sinking particles at a depth of 600 m. Three LST deployments associated with C-18a, within a 30-km radius, collected sinking diatom frustules, dominated by Corethron pennatum and Fragilariopsis nana, euphausiid fragments, crustacean and fish fecal material, detrital aggregates and mineral grains. One LST deployment at a "control" site 74 km away in open water devoid of icebergs collected diatom frustules, euphausiid molts, crustacean fecal material and detrital aggregates. Phytoplankton abundance, microbial abundance and biomass were significantly higher in the LST samples than in open-water collections at 500 m depth. The mean mass flux and organic carbon flux associated with iceberg C-18a were twice as high, 124 mg m(-2) d(-1) and 5.6 mg C(org) m(2) d(-1), respectively, than at the control site. A similar trend was observed in C(org)/(234)Th activity, being highest near C-18a and lowest at the control site. Extrapolation of the area of enrichment to 30 km radius around C-18a, 2826 km(2), produces an estimated mass flux of 350 tons d(-1) and carbon flux of 15.8 tons C(org) d(-1). Five similar sized icebergs to C-18a were identified in satellite images in a surrounding 47,636 km(2) area at the same time of sampling. Assuming a 30-km radius as the area of influence around each of these five icebergs, 46% of the total area would be enhanced with an export flux at 600 m of 122.4 tons C(org) d(-1). The large numbers of smaller icebergs identified visually in this area would only increase this area of influence. Icebergs serve as areas of local enrichment and with increased proliferation, must be considered in the cycling of carbon in the Southern Ocean. (C) 2010 Elsevier Ltd. All rights reserved.

Helly, JJ, Kaufmann RS, Stephenson GR, Vernet M.  2011.  Cooling, dilution and mixing of ocean water by free-drifting icebergs in the Weddell Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 58:1346-1363.   10.1016/j.dsr2.2010.11.010   AbstractWebsite

Iceberg C-18a (35 x 7 x 0.184 km) was studied repeatedly by five circumnavigational surveys in March-April 2009. During the period of the surveys, C-18a travelled 109 nautical miles in 23 days covering an area of 8.1 x 10(3) km(2). This iceberg was formed from iceberg C-18 (76 x 7 km) that originated from the Ross Ice Shelf in May, 2002. Ship-based measurements show that this iceberg produced fresh meltwater above the seasonal pycnocline that diluted and chilled the water it passed through from the surface to a depth of approximately 50 m (summer mixed layer). The surface meltwater effects were detectable as far away as 19 km and persisted for at least 10 days. We also found evidence that this iceberg was disrupting the Weddell Deep Water to depths up to 1500 m. If we include these deep effects through the water column, the estimate of ocean water altered by this single iceberg reaches 3 x 10(12) m(3) over 23 days. Chemical and biological effects were detected at the same space and time scales as the physical properties, with decreasing partial pressure of carbon dioxide (pCO(2)) close to the iceberg and lower particle and chlorophyll concentration. Ten days after the passage of C-18a, chlorophyll-a had increased by 15%. These results are consistent with alternative hypotheses regarding the role of icebergs as mediators of a localized geophysical disturbance (H(1)) as well as promoters of chlorophyll-a production (H(2)). (C) 2010 Elsevier Ltd. All rights reserved.

Cefarelli, AO, Vernet M, Ferrario ME.  2011.  Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 58:1436-1450.   10.1016/j.dsr2.2010.11.023   AbstractWebsite

Free-drifting icebergs in the Weddell Sea are expected to affect the surrounding marine ecosystem. Sampling associated with iceberg C-18a, a large tabular, free-drifting iceberg in the NW Weddell Sea, carried out from 10 March to 7 April 2009, was designed to test the hypothesis that the iceberg's presence modified phytoplankton composition and abundance. Areas that define a gradient of possible iceberg influence were sampled for phytoplankton: stations close ( < 1 km) and far (18 km) from iceberg C-18a, an area with numerous small icebergs, Iceberg Alley, and a control site 74 km away. Quantitative samples were obtained from Niskin bottles and counted with an inverted microscope for species abundance. Qualitative samples were collected with nets from the ship's seawater intake. Taxonomic determinations were performed with light and electron microscopy. Overall, diatoms dominated in the mixed layer (surface-similar to 40 m) and unidentified small flagellated and coccid cells at depth (similar to 100 m). Fragilariopsis nana, a diatom 2.4-15.5 mu m in length, dominated numerically the phytoplankton and was most abundant at the control area. The iceberg's effect on phytoplankton composition was consistent with the hypothesis that they facilitate phytoplankton communities enriched in diatoms, as found in other productive areas of Antarctica. Near the iceberg, diatoms were most abundant, principally at depth, while small flagellate concentration diminished. However, total phytoplankton abundance was lowest at Iceberg Alley in the area of highest meltwater contribution, as indicated by low mean temperature in the mixed layer, and highest at the control site. These results suggest that during austral fall, low growth or high zooplankton grazing could be counteracting the positive effect by icebergs on phytoplankton biomass, otherwise observed in summer months. (C) 2010 Elsevier Ltd. All rights reserved.

Stephenson, GR, Sprintall J, Gille ST, Vernet M, Helly JJ, Kaufmann RS.  2011.  Subsurface melting of a free-floating Antarctic iceberg. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 58:1336-1345.   10.1016/j.dsr2.2010.11.009   AbstractWebsite

Observations near a large tabular iceberg in the Weddell Sea in March and April 2009 show evidence that water from ice melting below the surface is dispersed in two distinct ways. Warm, salty anomalies in T-S diagrams suggest that water from the permanent thermocline is transported vertically as a result of turbulent entrainment of meltwater at the iceberg's base. Stepped profiles of temperature, salinity, and density in the seasonal thermocline are more characteristic of double-diffusive processes that transfer meltwater horizontally away from the vertical ice face. These processes contribute comparable amounts of meltwater-O(0.1 m(3)) to the upper 200 m of a 1 m(2) water column-but only basal melting results in significant upwelling of water from below the Winter Water layer into the seasonal thermocline, suggesting that these two processes may have different effects on vertical nutrient transport near an iceberg. (C) 2010 Elsevier Ltd. All rights reserved.

2010
Cefarelli, AO, Ferrario ME, Almandoz GO, Atencio AG, Akselman R, Vernet M.  2010.  Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance. Polar Biology. 33:1463-1484.   10.1007/s00300-010-0794-z   AbstractWebsite

Fragilariopsis species composition and abundance from the Argentine Sea and Antarctic waters were analyzed using light and electron microscopy. Twelve species (F. curta, F. cylindrus, F. kerguelensis, F. nana, F. obliquecostata, F. peragallii, F. pseudonana, F. rhombica, F. ritscheri, F. separanda, F. sublinearis and F. vanheurckii) are described and compared with samples from the Frenguelli Collection, Museo de La Plata, Argentina. F. peragallii was examined for the first time using electron microscopy, and F. pseudonana was recorded for the first time in Argentinean shelf waters. New information on the girdle view is included, except for the species F. curta, F. cylindrus and F. nana, for which information already existed. In the Argentine Sea, F. pseudonana was the most abundant Fragilariopsis species, and in Antarctic waters, F. curta was most abundant. Of the twelve species of Fragilariopsis documented, four occurred in the Argentine Sea, nine in the Drake Passage and twelve in the Weddell Sea. F. curta, F. kerguelensis, F. pseudonana and F. rhombica were present everywhere.

2008
Martinson, DG, Stammerjohn SE, Iannuzzi RA, Smith RC, Vernet M.  2008.  Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 55:1964-1987.   10.1016/j.dsr2.2008.04.038   AbstractWebsite

This study focuses on 12 years of physical oceanography data, collected during the Palmer, Antarctica, Long-Term Ecological Research program (PAL LTER) over the continental margin of the western Antarctic Peninsula (WAP). The dataset offers the most long-lived consistent CTD-gridded observations of Antarctic waters collected anywhere in the Southern Ocean. The physical characteristics, water column structure and spatio-temporal variability of the various properties are examined for physically consistent and ecologically important patterns and modes of variability. Unique findings of note include: (1) The average annual ocean heat flux (to the atmosphere) over the continental shelf shows a decreasing trend through time averaging 0.6 W m(-2) yr(-1), with an annual average ocean heat flux of similar to 19W m(-2). The ocean heat content over the shelf shows a linearly increasing trend of 2.6 x 10(7) J m(-2) yr(-1), due predominantly to increased upwelling of warm Upper Circumpolar Deep Water (UCDW) onto the shelf with a small contribution due to a slight warming of UCDW (but over longer time scales (50yr), the warming of UCDW dominates), (2) optimal multi-annual average vertical turbulent diffusivity coefficient (k(z)) is similar to 8.5 x 10(-5) m(2)s(-1), determined by inversion considering warming of trapped remnant winter mixed layer water, (3) the water masses in the grid are well separated according to bathymetrically controlled features, dividing the sample domain into 3 sub-regions: slope, shelf and coastal waters; (4) the Antarctic Circumpolar Current (ACC) was always present along the shelf-break (consistent with the Orsi et al. [1995. On the mericlional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research 1 42 (5), 641-673.] climatology) where UCDW shows its farthest southern extent and forms the Southern ACC Front (SACCF). The spatio-temporal variability of the delivery and distribution of ocean heat is dictated by the dynamics that are consistent with changes in the state of ENSO (La Nina drives enhanced upwelling in this region) and in the strength of the Southern Annular Mode (SAM; +SAM drives a local response similar to that of La Nina). The large 1997-1998 El Nino, followed by the transition to the strong La Nina of 1998-1999 (amplified by a large +SAM) introduced a regime shift on the shelf, resulting in the elimination of similar to 0.5 m of sea ice melt (presumably from the loss of sea ice being grown). 2002 was an anomalous year coinciding with an extraordinary storm forcing driving a 4.5 sigma increase in the heat content on the shelf. These jumps coincide with considerable changes in sea ice distribution as well. Pure UCDW on the shelf is primarily restricted to the deep canyons, with occasional appearances on the shelf floor near the middle of the grid. Anomalies in summer sea surface temperatures reflect wind strength (stronger winds mixing more cold winter water to the surface, with cooler SST; light winds, the opposite). (C) 2008 Elsevier Ltd. All rights reserved.