Export 3 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Paulsen, ML, Seuthe L, Reigstad M, Larsen A, Cape MR, Vernet M.  2018.  Asynchronous accumulation of organic carbon and nitrogen in the Atlantic gateway to the Arctic Ocean. Frontiers in Marine Science. 5   10.3389/fmars.2018.00416   AbstractWebsite

Nitrogen (N) is the main limiting nutrient for biological production in the Arctic Ocean. While dissolved inorganic N (DIN) is well studied, the substantial pool of N bound in organic matter (OM) and its bioavailability in the system is rarely considered. Covering a full annual cycle, we here follow N and carbon (C) content in particulate (P) and dissolved (D) OM within the Atlantic water inflow to the Arctic Ocean. While particulate organic carbon (POC), particulate organic nitrogen (PON), and dissolved organic carbon (DOC) accumulated in the surface waters from January to May, the dissolved organic nitrogen (DON)-pool decreased substantially (Delta - 50 mu g N L-1). The DON reduction was greater than the simultaneous reduction in DIN (Delta - 30 mu g N L-1), demonstrating that DON is a valuable N-source supporting the growing biomass. While the accumulating POM had a C/N ratio close to Redfield, the asynchronous accumulation of C and N in the dissolved pool resulted in a drastic increase in the C/N ratio of dissolved organic molecules (DOM) during the spring bloom. This is likely due to a combination of the reduction in DON, and a high release of carbon-rich sugars from phytoplankton, as 32% of the spring primary production (PP) was dissolved. Our findings thus caution calculations of particulate PP from DIN drawdown. During post-bloom the DON pool increased threefold due to an enhanced microbial processing of OM and reduced phytoplankton production. The light absorption spectra of DOM revealed high absorption within the UV range during spring bloom indicating DOM with low molecular weight in this period. The absorption of DOM was generally lower in the winter months than in spring and summer. Our results demonstrate that the change in ecosystem function (i.e., phytoplankton species and activity, bacterial activity and grazing) in different seasons is associated with strong changes in the C/N ratios and optical character of DOM and underpin the essential role of DON for the production cycle in the Arctic.

Cape, MR, Vernet M, Pettit EC, Wellner J, Truffer M, Akie G, Domack E, Leventer A, Smith CR, Huber BA.  2019.  Circumpolar deep water impacts glacial meltwater export and coastal biogeochemical cycling along the West Antarctic Peninsula. Frontiers in Marine Science. 6   10.3389/fmars.2019.00144   AbstractWebsite

Warming along the Antarctic Peninsula has led to an increase in the export of glacial meltwater to the coastal ocean. While observations to date suggest that this freshwater export acts as an important forcing on the marine ecosystem, the processes linking ice-ocean interactions to lower trophic-level growth, particularly in coastal bays and fjords, are poorly understood. Here, we identify salient hydrographic features in Barilari Bay, a west Antarctic Peninsula fjord influenced by warm modified Upper Circumpolar Deep Water. In this fjord, interactions between the glaciers and ocean act as a control on coastal circulation, contributing to the redistribution of water masses in an upwelling plume and a vertical flux of nutrients toward the euphotic zone. This nutrient-rich plume, containing glacial meltwater but primarily composed of ambient ocean waters including modified Upper Circumpolar Deep Water, spreads through the fjord as a 150-m thick layer in the upper water column. The combination of meltwater-driven stratification, long residence time of the surface plume owing to weak circulation, and nutrient enrichment promotes phytoplankton growth within the fjord, as evidenced by shallow phytoplankton blooms and concomitant nutrient drawdown at the fjord mouth in late February. Gradients in meltwater distributions are further paralleled by gradients in phytoplankton and benthic community composition. While glacial meltwater export and upwelling of ambient waters in this way contribute to elevated primary and secondary productivity, subsurface nutrient enhancement of glacially modified ocean waters suggests that a portion of these macronutrients, as well any iron upwelled or input in meltwater, are exported to the continental shelf. Sustained atmospheric warming in the coming decades, contributing to greater runoff, would invigorate the marine circulation with consequences for glacier dynamics and biogeochemical cycling within the fjord. We conclude that ice-ocean interactions along the Antarctic Peninsula margins act as an important control on coastal marine ecosystems, with repercussions for carbon cycling along the west Antarctic Peninsula shelf as a whole.

Randelhoff, A, Reigstad M, Chierici M, Sundfjord A, Ivanov V, Cape M, Vernet M, Tremblay JE, Bratbak G, Kristiansen S.  2018.  Seasonality of the physical and biogeochemical hydrography in the inflow to the Arctic Ocean through Fram Strait. Frontiers in Marine Science. 5   10.3389/fmars.2018.00224   AbstractWebsite

Eastern Fram Strait and the shelf slope region north of Svalbard is dominated by the advection of warm, salty and nutrient-rich Atlantic Water (AW). This oceanic heat contributes to keeping the area relatively free of ice. The last years have seen a dramatic decrease in regional sea ice extent, which is expected to drive large increases in pelagic primary production and thereby changes in marine ecology and nutrient cycling. In a concerted effort, we conducted five cruises to the area in winter, spring, summer and fall of 2014, in order to understand the physical and biogeochemical controls of carbon cycling, for the first time from a year-round point of view. We document (1) the offshore location of the wintertime front between salty AW and fresher Surface Water in the ocean surface, (2) thermal convection of Atlantic Water over the shelf slope, likely enhancing vertical nutrient fluxes, and (3) the importance of ice melt derived upper ocean stratification for the spring bloom timing. Our findings strongly confirm the hypothesis that this "Atlantification," as it has been called, of the shelf slope area north of Svalbard resulting from the advection of AW alleviates both nutrient and light limitations at the same time, leading to increased pelagic primary productivity in this region.