Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Steinberg, DK, Landry MR.  2017.  Zooplankton and the ocean carbon cycle. Annual Review of Marine Sciences, Vol 9. 9:413-444., Palo Alto: Annual Reviews   10.1146/annurev-marine-010814-015924   Abstract

Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.

2003
Piontkovski, SA, Landry MR.  2003.  Copepod species diversity and climate variability in the tropical Atlantic Ocean. Fisheries Oceanography. 12:352-359.   10.1046/j.1365-2419.2003.00250.x   AbstractWebsite

A database synthesized from 19 oceanographic expeditions conducted by the former Soviet Union was used to analyse interannual patterns in copepod species diversity in the tropical Atlantic. Mesozooplankton was collected predominately in vertical hauls through the upper 100 m with Juday nets. The samples from 744 oceanographic stations were identified and enumerated to the species level. To assess species diversity, the Shannon diversity index was used. On the interdecadal scale, no statistically confirmed trend was found in species diversity change over the years sampled ( 1963 - 89). Multiple regression analysis indicated that interannual fluctuations of the South Atlantic High ( pressure and latitude), the Azores High longitude and El Nino-Southern Oscillation (ENSO) index could explain 87% of species diversity fluctuations. Possible mechanisms that drive interannual fluctuations of species diversity are discussed.