Export 200 results:
Sort by: Author Title Type [ Year  (Desc)]
Zhang, SW, Chan KYK, Shen Z, Cheung SY, Landry MR, Liu HB.  2017.  A cryptic marine ciliate feeds on progametes of Noctiluca scintillans. Protist. 168:1-11.   10.1016/j.protis.2016.08.005   AbstractWebsite

The dinoflagellate Noctiluca scintillans (Noctiluca) has the ability to reproduce sexually, which may help to increase or restore its population size during periods of blooms or environmental stress. Here, we documented for the first time a marine ciliate Strombidium sp. that feeds on Noctiluca's progametes undergoing stages 5 to 9 of nuclear division. This ciliate frequently swam on or around gametogenic and some vegetative Noctiluca cells. The ciliates associated with gametogenic cells had significantly lower swimming speed and changed direction more frequently than those associated with vegetative cells, which overall increased their time spent around the food patches (progametes). This trophic interaction constitutes an upside-down predator -prey link, in which ciliates within the typical size range of Noctiluca prey, become the predators. Based on the phylogenetic tree (maximum-likelihood), there are 14 environmental clones similar to Strombidium sp. found in other coastal waters, where Noctiluca presence or blooms have been reported. This novel predator-prey relationship could therefore be common in other Noctiluca habitats. Additional studies are needed to assess the magnitude of its impacts on Noctiluca population dynamics and plankton bloom succession. (C)2016 Elsevier GmbH. All rights reserved.

Stukel, MR, Aluwihare LI, Barbeau KA, Chekalyuk AM, Goericke R, Miller AJ, Ohman MD, Ruacho A, Song H, Stephens BM, Landry MR.  2017.  Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. Proceedings of the National Academy of Sciences of the United States of America. 114:1252-1257.   10.1073/pnas.1609435114   AbstractWebsite

Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from U-238:Th-234 disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C.m(-2).d(-1)) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front wasmechanistically linked to Fe-stressed diatoms and high-mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional similar to 225 mg C.m(-2).d(-1) was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

Steinberg, DK, Landry MR.  2017.  Zooplankton and the ocean carbon cycle. Annual Review of Marine Sciences, Vol 9. 9:413-444., Palo Alto: Annual Reviews   10.1146/annurev-marine-010814-015924   Abstract

Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.

Valencia, B, Landry MR, Decima M, Hannides CCS.  2016.  Environmental drivers of mesozooplankton biomass variability in the North Pacific Subtropical Gyre. Journal of Geophysical Research-Biogeosciences. 121:3131-3143.   10.1002/2016jg003544   AbstractWebsite

The environmental drivers of zooplankton variability are poorly explored for the central subtropical Pacific, where a direct bottom-up food-web connection is suggested by increasing trends in primary production and mesozooplankton biomass at station ALOHA (A Long-term Oligotrophic Habitat Assessment) over the past 20 years (1994-2013). Here we use generalized additive models (GAMs) to investigate how these trends relate to the major modes of North Pacific climate variability. A GAM based on monthly mean data explains 43% of the temporal variability in mesozooplankton biomass with significant influences from primary productivity (PP), sea surface temperature (SST), North Pacific Gyre Oscillation (NPGO), and El Nino. This result mainly reflects the seasonal plankton cycle at station ALOHA, in which increasing light and SST lead to enhanced nitrogen fixation, productivity, and zooplankton biomass during summertime. Based on annual mean data, GAMs for two variables suggest that PP and 3-4 year lagged NPGO individually account for similar to 40% of zooplankton variability. The full annual mean GAM explains 70% of variability of zooplankton biomass with significant influences from PP, 4 year lagged NPGO, and 4 year lagged Pacific Decadal Oscillation (PDO). The NPGO affects wind stress, sea surface height, and subtropical gyre circulation and has been linked to mideuphotic zone anomalies in salinity and PP at station ALOHA. Our study broadens the known impact of this climate mode on plankton dynamics in the North Pacific. While lagged transport effects are also evident for subtropical waters, our study highlights a strong coupling between zooplankton fluctuations and PP, which differs from the transport-dominated climate influences that have been found for North Pacific boundary currents.

Pasulka, AL, Levin LA, Steele JA, Case DH, Landry MR, Orphan VJ.  2016.  Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem. Environmental Microbiology. 18:3022-3043.   10.1111/1462-2920.13185   AbstractWebsite

Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function.

Liu, X, Xiao WP, Landry MR, Chiang KP, Wang L, Huang BQ.  2016.  Responses of phytoplankton communities to environmental variability in the East China Sea. Ecosystems. 19:832-849.   10.1007/s10021-016-9970-5   AbstractWebsite

We investigated seasonal and spatial patterns of phytoplankton variability in the East China Sea in order to understand biomass and compositional responses to environmental factors in the contemporary ocean. We used satellite imagery from 2002 to 2013 to define the mean seasonal climatology of sea surface temperature and chlorophyll a. Phytoplankton and environmental measurements were synthesized for the study region and four seasons from 11 cruises conducted from 2006 to 2012. The results of CHEMTAX analyses on group-specific phytoplankton composition were consistent with those of microscopy and flow cytometry observations, revealing three patterns of seasonal variability. Canonical correspondence analysis and generalized additive models (GAMs) were used to resolve the spatiotemporal variations of major phytoplankton groups and their relationships to month, temperature, salinity, nutrients, mixed layer depth, and bottom depth. Monsoon forcing drove the distributional patterns of environmental factors and was critical to explaining phytoplankton dynamics at the seasonal scale. Compared to autumn and winter, significantly higher chlorophyll a concentrations were observed during spring and summer, associated with the spring bloom and the Changjiang (Yangtze) River plume, respectively. Diatoms dominated biomass over the East China Sea, especially during the summer months influenced by the Changjiang (Yangtze) River plume, whereas dinoflagellates were especially important during spring blooms. GAMs analysis showed the differences in their responses to environmental variability, with a clear mid-range salinity optimum (similar to 31) and a more pronounced temperature effect for dinoflagellates. The photosynthetic bacteria, Prochlorococcus and Synechococcus, both increased strongly with warming, but Prochlorococcus showed stronger sensitivity to variations in physical environmental parameters, whereas Synechococcus was more responsive to chemical (nutrient) variability, with broader tolerance of low-salinity conditions.

Stukel, MR, Benitez-Nelson CR, Decima M, Taylor AG, Buchwald C, Landry MR.  2016.  The biological pump in the Costa Rica Dome: an open-ocean upwelling system with high new production and low export. Journal of Plankton Research. 38:348-365.   10.1093/plankt/fbv097   AbstractWebsite

The Costa Rica Dome is a picophytoplankton-dominated, open-ocean upwelling system in the Eastern Tropical Pacific that overlies the ocean's largest oxygen minimum zone. To investigate the efficiency of the biological pump in this unique area, we used shallow (90-150 m) drifting sediment traps and Th-234: U-238 deficiency measurements to determine export fluxes of carbon, nitrogen and phosphorus in sinking particles. Simultaneous measurements of nitrate uptake and shallow water nitrification allowed us to assess the equilibrium balance of new and export production over a monthly timescale. While f-ratios (new: total production) were reasonably high (0.36+/-0.12, mean+/-standard deviation), export efficiencies were considerably lower. Sediment traps suggested e-ratios (export/C-14-primary production) at 90-100 m ranging from 0.053 to 0.067. ThE-ratios (Th-234 disequilibrium-derived export) ranged from 0.038 to 0.088. C: N and N: P stoichiometries of sinking material were both greater than canonical (Redfield) ratios or measured C: N of suspended particulates, and they increased with depth, suggesting that both nitrogen and phosphorus were preferentially remineralized from sinking particles. Our results are consistent with an ecosystem in which mesozooplankton play a major role in energy transfer to higher trophic levels but are relatively inefficient in mediating vertical carbon flux to depth, leading to an imbalance between new production and sinking flux.

Goes, JI, Gomes HD, Selph KE, Landry MR.  2016.  Biological response of Costa Rica Dome phytoplankton to Light, Silicic acid and Trace metals. Journal of Plankton Research. 38:290-304.   10.1093/plankt/fbv108   AbstractWebsite

The Costa Rica Dome (CRD) is a unique open-ocean upwelling system, with picophytoplankton dominance of phytoplankton biomass and suppressed diatoms, yet paradoxically high export of biogenic silica. As a part of Flux and Zinc Experiments cruise in summer (June-July 2010), we conducted shipboard incubation experiments in the CRD to examine the potential roles of Si, Zn, Fe and light as regulating factors of phytoplankton biomass and community structure. Estimates of photosynthetic quantum yields revealed an extremely stressed phytoplankton population that responded positively to additions of silicic acid, iron and zinc and higher light conditions. Size-fractioned Chl a yielded the surprising result that picophytoplankton, as well as larger phytoplankton, responded most to treatments with added silicic acid incubated at high incident light (HL + Si). The combination of Si and HL also led to increases in cell sizes of picoplankton, notably in Synechococcus. Such a response, coupled with the recent discovery of significant intracellular accumulation of Si in some picophytoplankton, suggests that small phytoplankton could play a potentially important role in Si cycling in the CRD, which may help to explain its peculiar export characteristics.

Freibott, A, Taylor AG, Selph KE, Liu HB, Zhang WC, Landry MR.  2016.  Biomass and composition of protistan grazers and heterotrophic bacteria in the Costa Rica Dome during summer 2010. Journal of Plankton Research. 38:230-243.   10.1093/plankt/fbv107   AbstractWebsite

We investigated biomass and composition of heterotrophic microbes in the Costa Rica Dome during June-July 2010 as part of a broader study of plankton trophic dynamics. Because picophytoplankton (, 2 mm) are known to dominate in this unique upwelling region, we hypothesized tight biomass relationships between size-determined predator-prey pairs (i.e. picoplankton-nano-grazers, nanoplankton-micro-grazers) within the microbial community. Integrated biomass of heterotrophic bacteria ranged from 180 to 487 mg C m(-2) and was significantly correlated with total autotrophic carbon. Heterotrophic protist (H-protist) biomass ranged more narrowly from 488 to 545 mg C m(-2), and was comprised of 60% dinoflagellates, 30% other flagellates and 11% ciliates. Nano-sized (<20 mu m) protists accounted for the majority (57%) of grazer biomass and were positively correlated with picoplankton, partially supporting our hypothesis, but nanoplankton and micro-grazers (>20 mu m) were not significantly correlated. The relative constancy of H-protist biomass among locations despite clear changes in integrated autotrophic biomass, Chl a, and primary production suggests that mesozooplankton may exert a tight top-down control on micro-grazers. Biomass-specific consumption rates of phytoplankton by protistan grazers suggest an instantaneous growth rate of 0.52 day(-1) for H-protists, similar to the growth rate of phytoplankton and consistent with a trophically balanced ecosystem dominated by piconanoplankton interactions.

Baines, SB, Chen X, Twining BS, Fisher NS, Landry MR.  2016.  Factors affecting Fe and Zn contents of mesozooplankton from the Costa Rica Dome. Journal of Plankton Research. 38:331-347.   10.1093/plankt/fbv098   AbstractWebsite

Mineral limitation of mesozooplankton production is possible in waters with low trace metal availability. As a step toward estimating mesozooplankton Fe and Zn requirements under such conditions, we measured tissue concentrations of major and trace nutrient elements within size-fractioned zooplankton samples collected in and around the Costa Rica Upwelling Dome, a region where phytoplankton growth may be co-limited by Zn and Fe. The geometric mean C, N, P contents were 27, 5.6 and 0.21 mmol gdw(-1), respectively. The values for Fe and Zn were 1230 and 498 nmol gdw(-1), respectively, which are low compared with previous measurements. Migrant zooplankton caused C and P contents of the 2-5 mm fraction to increase at night relative to the day while the Fe and Zn contents decreased. Fe content increased with size while Zn content decreased with size. Fe content was strongly correlated to concentrations of two lithogenic tracers, Al and Ti. We estimate minimum Fe: C ratios in large migrant and resident mixed layer zooplankton to be 15 and 60 mu mol mol(-1), respectively. The ratio of Zn: C ranged from 11 mu mol mol(-1) for the 0.2-0.5 mm size fraction to 33 mu mol mol(-1) for the 2-5 mm size fraction.

Decima, M, Landry MR, Stukel MR, Lopez-Lopez L, Krause JW.  2016.  Mesozooplankton biomass and grazing in the Costa Rica Dome: amplifying variability through the plankton food web. Journal of Plankton Research. 38:317-330.   10.1093/plankt/fbv091   AbstractWebsite

We investigated standing stocks and grazing rates of mesozooplankton assemblages in the Costa Rica Dome (CRD), an open-ocean upwelling ecosystem in the eastern tropical Pacific. While phytoplankton biomass in the CRD is dominated by picophytoplankton (<2-mu m cells) with especially high concentrations of Synechococcus spp., we found high mesozooplankton biomass (similar to 5 g dry weight m(-2)) and grazing impact (12-50% integrated water column chlorophyll a), indicative of efficient food web transfer from primary producers to higher levels. In contrast to the relative uniformity in water-column chlorophyll a and mesozooplankton biomass, variability in herbivory was substantial, with lower rates in the central dome region and higher rates in areas offset from the dome center. While grazing rates were unrelated to total phytoplankton, correlations with cyanobacteria (negative) and biogenic SiO2 production (positive) suggest that partitioning of primary production among phytoplankton sizes contributes to the variability observed in mesozooplankton metrics. We propose that advection of upwelled waters away from the dome center is accompanied by changes in mesozooplankton composition and grazing rates, reflecting small changes within the primary producers. Small changes within the phytoplankton community resulting in large changes in the mesozooplankton suggest that the variability in lower trophic level dynamics was effectively amplified through the food web.

Baines, SB, Chen X, Vogt S, Fisher NS, Twining BS, Landry MR.  2016.  Microplankton trace element contents: implications for mineral limitation of mesozooplankton in an HNLC area. Journal of Plankton Research. 38:256-270.   10.1093/plankt/fbv109   AbstractWebsite

Mesozooplankton production in high-nutrient low-chlorophyll regions of the ocean may be reduced if the trace element concentrations in their food are insufficient to meet growth and metabolic demands. We used elemental microanalysis (SXRF) of single-celled plankton to determine their trace metal contents during a series of semi-Lagrangian drift studies in an HNLC upwelling region, the Costa Rica Dome (CRD). Cells from the surface mixed layer had lower Fe:S but higher Zn:S and Ni:S than those from the subsurface chlorophyll maximum at 22–30 m. Diatom Fe:S values were typically 3-fold higher than those in flagellated cells. The ratios of Zn:C in flagellates and diatoms were generally similar to each other, and to co-occurring mesozooplankton. Estimated Fe:C ratios in flagellates were lower than those in co-occurring mesozooplankton, sometimes by more than 3-fold. In contrast, Fe:C in diatoms was typically similar to that in zooplankton. RNA:DNA ratios in the CRD were low compared with other regions, and were related to total autotrophic biomass and weakly to the discrepancy between Zn:C in flagellated cells and mesozooplankton tissues. Mesozooplankton may have been affected by the trace element content of their food, even though trace metal limitation of phytoplankton was modest at best.

Krause, JW, Stukel MR, Taylor AG, Taniguchi DAA, de Verneil A, Landry MR.  2016.  Net biogenic silica production and the contribution of diatoms to new production and organic matter export in the Costa Rica Dome ecosystem. Journal of Plankton Research. 38:216-229.   10.1093/plankt/fbv077   AbstractWebsite

We determined the net rate of biogenic silica (bSiO(2)) production and estimated the diatom contribution to new production and organic matter export in the Costa Rica Dome during summer 2010. The shallow thermocline significantly reduces bSiO(2) dissolution rates below the mixed layer, leading to significant enhancement of bSiO(2) relative to organic matter (silicate-pump condition). This may explain why deep export of bSiO(2) in this region is elevated by an order of magnitude relative to comparable systems. Diatom carbon, relative to autotrophic carbon, was low (<3%); however, the contribution of diatoms to new production averaged 3 and 13% using independent approaches. The 4-old discrepancy between methods may be explained by a low average C:Si ratio (similar to 1.4) for the net produced diatom C relative to the net produced bSiO(2). We speculate that this low production ratio is not the result of reduced C, but may arise from a significant contribution of non-diatom silicifying organisms to bSiO(2) production. The contribution of diatoms to organic matter export was minor (5.7%). These results, and those of the broader project, suggest substantial food-web transformation of diatom organic matter in the euphotic zone, which creates enriched bSiO(2) relative to organic matter within the exported material.

Taylor, AG, Landry MR, Freibott A, Selph KE, Gutierrez-Rodriguez A.  2016.  Patterns of microbial community biomass, composition and HPLC diagnostic pigments in the Costa Rica upwelling dome. Journal of Plankton Research. 38:183-198.   10.1093/plankt/fbv086   AbstractWebsite

We investigated biomass, size-structure, composition, depth distributions and spatial variability of the phytoplankton community in the Costa Rica Dome (CRD) in June-July 2010. Euphotic zone profiles were sampled daily during Lagrangian experiments in and out of the dome region, and the community was analyzed using a combination of digital epifluorescence microscopy, flow cytometry and HPLC pigments. The mean depth-integrated biomass of phytoplankton ranged 2-fold, from 1089 to 1858 mg C m(-2) (mean+/-SE = 1378+/-112 mg C m(-2)), among 4 water parcels tracked for 4 days. Corresponding mean (+/-SE) integrated values for total chlorophyll a (Chl a) and the ratio of autotrophic carbon to Chl a were 24.1+/-1.5 mg Chl a m(-2) and 57.5+/-3.4, respectively. Absolute and relative contributions of picophytoplankton (similar to 60%), Synechococcus (>33%) and Prochlorococcus (17%) to phytoplankton community biomass were highest in the central dome region, while >20 mu m phytoplankton accounted for <= 10%, and diatoms, <2%, of biomass in all areas. Nonetheless, autotrophic flagellates, dominated by dinoflagellates, exceeded biomass contributions of Synechococcus at all locations. Order-of-magnitude discrepancies in the relative contributions of diatoms (overestimated) and dinoflagellates (underestimated) based on diagnostic pigments relative to microscopy highlight potential significant biases associated with making community inferences from pigments.

Gutierrez-Rodriguez, A, Selph KE, Landry MR.  2016.  Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments. Journal of Plankton Research. 38:271-289.   10.1093/plankt/fbv074   AbstractWebsite

The Costa Rica Dome (CRD) represents a classic case of the bloom-forming capacity of small phytoplankton. Unlike other upwelling systems, autotrophic biomass in the CRD is dominated by picocyanobacteria and small eukaryotes that outcompete larger diatoms and reach extremely high biomass levels. We investigated responses of the subsurface phytoplankton community of the CRD to changes associated with vertical displacement of water masses, coupling in situ transplanted dilution experiments with flow cytometry and epifluorescence microscopy to assess group-specific dynamics. Growth rates of Synechococcus (SYN) and photosynthetic picoeukaryotes (PEUK) were positively correlated with light (R-pearson_SYN = 0.602 and R-pearson_PEUK = 0.588, P<0.001). Growth rates of Prochlorococcus (PRO), likely affected by photoinhibition, were not light correlated (R-pearson_PRO = 0.101, P = 0.601). Overall, grazing and growth rates were closely coupled in all picophytoplankton groups (R-spearman_PRO = 0.572, R-spearman_SYN = 0.588, R-spearman_PEUK = 0.624), and net growth rates remained close to zero. Conversely, the abundance and biomass of larger phytoplankton, mainly diatoms, increased more than 10-fold in shallower transplant incubations indicating that, in addition to trace-metal chemistry, light also plays a significant role in controlling microphytoplankton populations in the CRD.

Landry, MR, Selph KE, Decima M, Gutierrez-Rodriguez A, Stukel MR, Taylor AG, Pasulka AL.  2016.  Phytoplankton production and grazing balances in the Costa Rica Dome. Journal of Plankton Research. 38:366-379.   10.1093/plankt/fbv089   AbstractWebsite

We investigated phytoplankton production rates and grazing fates in the Costa Rica Dome (CRD) during summer 2010 based on dilution depth profiles analyzed by flow cytometry and pigments and mesozooplankton grazing assessed by gut fluorescence. Three community production estimates, from C-14 uptake (1025+/-113 mg C m(-2) day(-1)) and from dilution experiments analyzed for total Chla (990+/-106 mg C m(-2) day(-1)) and flow cytometry populations (862+/-71 mg C m(-2) day(-1)), exceeded regional ship-based values by 2-3-fold. Picophytoplankton accounted for 56% of community biomass and 39% of production. Production profiles extended deeper for Prochlorococcus (PRO) and picoeukaryotes than for Synechococcus (SYN) and larger eukaryotes, but 93% of total production occurred above 40 m. Microzooplankton consumed all PRO and SYN growth and two-third of total production. Positive net growth of larger eukaryotes in the upper 40 m was balanced by independently measured consumption by mesozooplankton. Among larger eukaryotes, diatoms contributed similar to 3% to production. On the basis of this analysis, the CRD region is characterized by high production and grazing turnover, comparable with or higher than estimates for the eastern equatorial Pacific. The region nonetheless displays characteristics atypical of high productivity, such as picophytoplankton dominance and suppressed diatom roles.

Selph, KE, Landry MR, Taylor AG, Gutierrez-Rodriguez A, Stukel MR, Wokuluk J, Pasulka A.  2016.  Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome. Journal of Plankton Research. 38:199-215.   10.1093/plankt/fbv063   AbstractWebsite

During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production (C-14-incorporation) and group-specific growth and net growth rates (two-treatment sea-water dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Nino event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (similar to 0.5-0.9 day(-1)), but higher on the edge of the dome (similar to 0.9-1.0 day(-1)) and in adjacent coastal waters (0.9-1.3 day(-1)). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (similar to 0.5-0.6 day(-1)), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m(-2) day(-1) on average, even during a period of reduced upwelling.

Landry, MR, de Verneil A, Goes JI, Moffett JW.  2016.  Plankton dynamics and biogeochemical fluxes in the Costa Rica Dome: introduction to the CRD Flux and Zinc Experiments. Journal of Plankton Research. 38:167-182.   10.1093/plankt/fbv103   AbstractWebsite

The Costa Rica Dome (CRD) is an open-ocean upwelling system in the Eastern Tropical Pacific that overlies the ocean's largest oxygen minimum zone (OMZ). The region has unique characteristics, biomass dominance by picophytoplankton, suppressed diatoms, high biomass of higher consumers and presumptive trace metal limitation, but is poorly understood in terms of pelagic stock and process relationships, including productivity and production controls. Here, we describe the goals, project design, physical context and major findings of the Flux and Zinc Experiments cruise conducted in June-July 2010 to assess trophic flux relationships and elemental controls on phytoplankton in the CRD. Despite sampling during a year of suppressed summertime surface chlorophyll, cruise results show high productivity (similar to 1 g C m(-2) day(-1)), high new production relative to export, balanced production and grazing, disproportionate biomass-specific productivity of large phytoplankton and high zooplankton stocks. Zinc concentrations are low in surface waters relative to phosphorous and silicate in other regions, providing conditions conducive to picophytoplankton, like Synechococcus, with low Zn requirements. Experiments nonetheless highlight phytoplankton limitation or co-limitation by silicic acid, driven by a strong silica pump that is linked to low dissolution of biogenic silica in the cold shallow thermocline of the lower euphotic zone.

Chappell, PD, Vedmati J, Selph KE, Cyr HA, Jenkins BD, Landry MR, Moffett JW.  2016.  Preferential depletion of zinc within Costa Rica upwelling dome creates conditions for zinc co-limitation of primary production. Journal of Plankton Research. 38:244-255.   10.1093/plankt/fbw018   AbstractWebsite

The Costa Rica Dome (CRD) is a wind-driven feature characterized by high primary production and an unusual cyanobacterial bloom in surface waters. It is not clear whether this bloom arises from top-down or bottom-up processes. Several studies have argued that trace metal geochemistry within the CRD contributes to the composition of the phytoplankton assemblages, since cyanobacteria and eukaryotic phytoplankton have different transition metal requirements. Here, we report that total dissolved zinc (Zn) is significantly depleted relative to phosphate (P) and silicate (Si) within the upper water column of the CRD compared with other oceanic systems, and this may create conditions favorable for cyanobacteria, which have lower Zn requirements than their eukaryotic competitors. Shipboard grow-out experiments revealed that while Si was a limiting factor under our experimental conditions, additions of Si and either iron (Fe) or Zn led to higher biomass than Si additions alone. The addition of Fe and Zn alone did not lead to significant enhancements. Our results suggest that the depletion of Zn relative to P in upwelled waters may create conditions in the near-surface waters that favor phytoplankton with low Zn requirements, including cyanobacteria.

Stukel, MR, Kahru M, Benitez-Nelson CR, Decima M, Goericke R, Landry MR, Ohman MD.  2015.  Using Lagrangian-based process studies to test satellite algorithms of vertical carbon flux in the eastern North Pacific Ocean. Journal of Geophysical Research-Oceans. 120:7208-7222.   10.1002/2015jc011264   AbstractWebsite

The biological carbon pump is responsible for the transport of similar to 5-20 Pg C yr(-1) from the surface into the deep ocean but its variability is poorly understood due to an incomplete mechanistic understanding of the complex underlying planktonic processes. In fact, algorithms designed to estimate carbon export from satellite products incorporate fundamentally different assumptions about the relationships between plankton biomass, productivity, and export efficiency. To test the alternate formulations of export efficiency in remote-sensing algorithms formulated by Dunne et al. (2005), Laws et al. (2011), Henson et al. (2011), and Siegel et al. (2014), we have compiled in situ measurements (temperature, chlorophyll, primary production, phytoplankton biomass and size structure, grazing rates, net chlorophyll change, and carbon export) made during Lagrangian process studies on seven cruises in the California Current Ecosystem and Costa Rica Dome. A food-web based approach formulated by Siegel et al. (2014) performs as well or better than other empirical formulations, while simultaneously providing reasonable estimates of protozoan and mesozooplankton grazing rates. By tuning the Siegel et al. (2014) algorithm to match in situ grazing rates more accurately, we also obtain better in situ carbon export measurements. Adequate representations of food-web relationships and grazing dynamics are therefore crucial to improving the accuracy of export predictions made from satellite-derived products. Nevertheless, considerable unexplained variance in export remains and must be explored before we can reliably use remote sensing products to assess the impact of climate change on biologically mediated carbon sequestration.

Brzezinski, MA, Krause JW, Bundy RM, Barbeau KA, Franks P, Goericke R, Landry MR, Stukel MR.  2015.  Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. Journal of Geophysical Research-Oceans. 120:4654-4669.   10.1002/2015jc010829   AbstractWebsite

Nutrient dynamics, phytoplankton rate processes, and export were examined in a frontal region between an anticyclone and a pair of cyclones 120 km off the coast in the southern California Current System (sCCS). Low silicic acid: nitrate ratios (Si:N) and high nitrate to iron ratios (N: Fe) characteristic of Fe-limiting conditions in the sCCS were associated with the northern cyclone and with the transition zone between the cyclones and the anticyclone. Phytoplankton growth in low-Si:N, high-N:Fe waters responded strongly to added Fe, confirming growth limitation by Fe of the diatom-dominated phytoplankton community. Low Si: N waters had low biogenic silica content, intermediate productivity, but high export compared to intermediate Si: N waters indicating increased export efficiency under Fe stress. Biogenic silica and particulate organic carbon (POC) export were both high beneath low Si: N waters with biogenic silica export being especially enhanced. This suggests that relatively high POC export from low Si: N waters was supported by silica ballasting from Fe-limited diatoms. Higher POC export efficiency in low Si: N waters may have been further enhanced by lower rates of organic carbon remineralization due to reduced grazing of more heavily armored diatoms growing under Fe stress. The results imply that Fe stress can enhance carbon export, despite lowering productivity, by driving higher export efficiency.

Pasulka, AL, Samo TJ, Landry MR.  2015.  Grazer and viral impacts on microbial growth and mortality in the southern California Current Ecosystem. Journal of Plankton Research. 37:320-336.   10.1093/plankt/fbv011   AbstractWebsite

Protistan grazers and viruses are major agents of mortality in marine microbial communities with substantially different implications for food-web dynamics, carbon cycling and diversity maintenance. While grazers and viruses are typically studied independently, their impacts on microbial communities may be complicated by direct and indirect interactions of their mortality effects. Using a modification of the seawater dilution approach, we quantified growth and mortality rates for total phytoplankton and picophytoplankton populations (Prochlorococcus, Synechococcus, picoeukaryotes) at four contrasting sites in the California Current Ecosystem. Grazing mortality was significant in 10 of 15 cases, while viral effects were significant for 2 cases. Nonetheless, mortality estimates for the entire phytoplankton community based on chlorophyll a were 38 +/- 13% higher when viral effects were included, relative to grazing alone. Mortality estimates for picophytoplankton varied in space and among groups. We also explored a potential methodological constraint of this method and hypothesize that heterotrophic bacteria may be affected by the dilution of their growth-sustaining substrates. For all picophytoplankton, estimates of grazing and viral mortality were inversely related within and across experiments. Indirect interactions among grazers and viruses may be important to consider if there are tradeoffs in the grazing and virus resistance strategies of prey/host cells.

Taylor, AG, Landry MR, Selph KE, Wokuluk JJ.  2015.  Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 112:117-128.   10.1016/j.dsr2.2014.02.006   AbstractWebsite

As part of the California Current Ecosystem Long Term Ecological Research (CCE-LTER) Program, samples for epifluorescence microscopy and flow cytometry (FCM) were collected at ten 'cardinal' stations on the California Cooperative Oceanic Fisheries Investigations (CalCOFI) grid during 25 quarterly cruises from 2004 to 2010 to investigate the biomass, composition and size-structure of microbial communities within the southern CCE. Based on our results, we divided the region into offshore, and inshore northern and southern zones. Mixed-layer phytoplankton communities in the offshore had lower biomass (16 +/- 2 mu g C L-1; all errors represent the 95% confidence interval), smaller size-class cells and biomass was more stable over seasonal cycles. Offshore phytoplankton biomass peaked during the winter months. Mixed-layer phytoplankton communities in the northern and southern inshore zones had higher biomass (78 +/- 22 and 32 +/- 9 mu g C L-1, respectively), larger size-class cells and stronger seasonal biomass patterns. Inshore communities were often dominated by micro-size (20-200 mu m) diatoms; however, autotrophic dinoflagellates dominated during late 2005 to early 2006, corresponding to a year of delayed upwelling in the northern CCE. Biomass trends in mid and deep euphoric zone samples were similar to those seen in the mixed-layer, but with declining biomass with depth, especially for larger size classes in the inshore regions. Mixed-layer ratios of autotrophic carbon to chlorophyll a (AC:Chl a) had a mean value of 51.5 +/- 53. Variability of nitracline depth, bin-averaged AC:Chl a in the mixed-layer ranged from 40 to 80 and from 22 to 35 for the deep euphotic zone, both with significant positive relationships to nitracline depth. Total living microbial carbon, including auto- and heterotrophs, consistently comprised about half of particulate organic carbon (POC). (C) 2014 Elsevier Ltd. All rights reserved.

Gutierrez-Rodriguez, A, Decima M, Popp BN, Landry MR.  2014.  Isotopic invisibility of protozoan trophic steps in marine food webs. Limnology and Oceanography. 59:1590-1598.   10.4319/lo.2014.59.5.1590   AbstractWebsite

According to modern oceanographic perspectives that emphasize microbial pathways, phagotrophic protists comprise one to several levels of intermediate consumers between phytoplankton and larger metazooplankton (copepods and krill). However, recent attempts to quantify pelagic trophic structure in the open ocean using nitrogen stable isotope techniques have brought into question whether such measurements adequately account for protistan trophic steps. Here, we use a two-stage chemostat system, with Dunaliella tertiolecta and Oxyrrhis marina as a predator-prey model, to address this question experimentally. To investigate N-15 trophic discrimination under different conditions of nitrogen availability and recycling, Oxyrrhis was fed in the light and in the dark on phytoplankton provided with high and low nutrient ratios of N : P. We used both bulk and amino acids-compound specific isotopic analysis (AA CSIA) to distinguish trophic fractionation from changes in the delta N-15 values of phytoplankton (isotopic baseline). Results demonstrate that protistan consumers are not, in fact, significantly enriched in N-15 relative to their prey, a marked departure from the general findings for metazoan consumers. In addition, we show that changes in the isotopic baseline propagate rapidly through the protistan food chain, highlighting the need to account for this variability at ecologically relevant time scales. If protistan trophic steps are largely invisible or significantly underestimated using nitrogen isotope measurements, research that utilize such measurements in ecological, fisheries, and climate change studies may miss a large part of the ocean's variability in food-web structure and ecosystem function.

Taniguchi, DAA, Landry MR, Franks PJS, Selph KE.  2014.  Size-specific growth and grazing rates for picophytoplankton in coastal and oceanic regions of the eastern Pacific. Marine Ecology Progress Series. 509:87-101.   10.3354/meps10895   AbstractWebsite

Estimates of growth and grazing mortality rates for different size classes and taxa of natural picophytoplankton assemblages were measured in mixed-layer experiments conducted in 3 regions of the eastern Pacific: the California Current Ecosystem, Costa Rica Dome, and equatorial Pacific. Contrary to expectation, size-dependent rates for cells between 0.45 and 4.0 mu m in diameter showed no systematic trends with cell size both in and among regions. For all size classes, mean +/- SD growth rates ranged from -0.70 +/- 0.17 to 0.83 +/- 0.13 d(-1) and grazing rates between -0.07 +/- 0.13 and 1.17 +/- 0.10 d(-1). Taxon-specific growth rates for Prochlorococcus ranged from 0.17 +/- 0.12 to 0.59 +/- 0.01 d(-1), for Synechococcus from 0.68 +/- 0.03 to 0.97 +/- 0.04 d(-1), for picoeukaryotes from 0.46 +/- 0.13 to 1.03 +/- 0.06 d(-1), and for all cells combined between 0.45 +/- 0.03 and 0.65 +/- 0.02 d(-1). For grazing, Prochlorococcus rates ranged between 0.02 +/- 0.12 and 0.66 +/- 0.02 d(-1), Synechococcus rates between 0.24 +/- 0.08 and 0.92 +/- 0.05 d(-1), for picoeukaryotes between 0.19 +/- 0.10 and 0.78 +/- 0.09 d(-1), and for all cells between 0.16 +/- 0.05 and 0.75 +/- 0.02 d(-1). When comparing rates among taxa, only Prochlorococcus had consistently lower rates than Synechococcocus in all regions. No other trends were apparent. Temperature relationships based on the Metabolic Theory of Ecology were able to explain more of the variability among grazing rates than among growth rates for each taxon considered.