Publications

Export 6 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Kahru, M, Nommann S, Allikas E.  1989.  A Measurement System for Studying Spatial-Distribution of Plankton. Okeanologiya. 29:670-674. AbstractWebsite
n/a
Kahru, M, Michell GB, Diaz A, Miura M.  2004.  MODIS detects a devastating algal bloom in Paracas Bay, Peru. EOS Trans. AGU Eos, Transactions American Geophysical Union. 85:465. Abstract
n/a
Melville, WK, Lenain L, Cayan DR, Kahru M, Kleissl JP, Linden PF, Statom NM.  2016.  The Modular Aerial Sensing System. Journal of Atmospheric and Oceanic Technology. 33:1169-1184.   10.1175/jtech-d-15-0067.1   AbstractWebsite

Satellite remote sensing has enabled remarkable progress in the ocean, earth, atmospheric, and environmental sciences through its ability to provide global coverage with ever-increasing spatial resolution. While exceptions exist for geostationary ocean color satellites, the temporal coverage of low-Earth-orbiting satellites is not optimal for oceanographic processes that evolve over time scales of hours to days. In hydrology, time scales can range from hours for flash floods, to days for snowfall, to months for the snowmelt into river systems. On even smaller scales, remote sensing of the built environment requires a building-resolving resolution of a few meters or better. For this broad range of phenomena, satellite data need to be supplemented with higher-resolution airborne data that are not tied to the strict schedule of a satellite orbit. To address some of these needs, a novel, portable, high-resolution airborne topographic lidar with video, infrared, and hyperspectral imaging systems was integrated. The system is coupled to a highly accurate GPS-aided inertial measurement unit (GPS IMU), permitting airborne measurements of the sea surface displacement, temperature, and kinematics with swath widths of up to 800 m under the aircraft, and horizontal spatial resolution as low as 0.2 m. These data are used to measure ocean waves, currents, Stokes drift, sea surface height (SSH), ocean transport and dispersion, and biological activity. Hydrological and terrestrial applications include measurements of snow cover and the built environment. This paper describes the system, its performance, and present results from recent oceanographic, hydrological, and terrestrial measurements.

Kahru, M, Lee Z, Kudela RM, Manzano-Sarabia M, Mitchell GB.  2015.  Multi-satellite time series of inherent optical properties in the California Current. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 112:91-106.   10.1016/j.dsr2.2013.07.023   AbstractWebsite

Satellite ocean color radiometry is a powerful method to study ocean biology but the relationships between satellite measurements and the in situ ocean properties are not well understood. Moreover, the measurements made with one satellite sensor may not be directly compatible with similar measurements from another sensor. We estimate inherent optical properties (IOPs) in the California Current by applying empirically optimized versions of the Quasi-Analytical Algorithm (QAA) of Lee et al. (2002) to satellite remote sensing reflectance (Rrs) from four ocean color sensors (OCTS, SeaWiFS, MODISA and MERIS). The set of estimated IOPs includes the total absorption coefficient at 490 nm (a490), phytoplankton absorption coefficient at 440 nm (aph440), absorption by dissolved and detrital organic matter at 440 nm (adg440) and particle backscattering coefficient at 490 nm (bbp490). The empirical inversion models are created by minimizing the deviations between satellite match-ups with in situ measurements and between the estimates of individual overlapping satellite sensors. The derived empirical algorithms were then applied to satellite Level-3 daily Rrs to create merged multi-sensor time series of the near-surface optical characteristics in the California Current region for a time period of over 16 years (November 1996-December 2012). Due to the limited number of in situ match-ups and their uneven distribution as well as the large errors in the satellite-derived Rrs, the uncertainty in the retrieved lOPs is still significant and difficult to quantify. The merged time series show the dominant annual cycle but also significant variability at interannual time scales. The ratio of adg440 to aph440 is around 1 in the transition zone, is > 1 in the coastal zone and generally

Kahru, M, Elmgren R.  2014.  Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences. 11:3619-3633.   10.5194/bg-11-3619-2014   AbstractWebsite

Cyanobacteria, primarily of the species Nodularia spumigena, form extensive surface accumulations in the Baltic Sea in July and August, ranging from diffuse flakes to dense surface scums. The area of these accumulations can reach similar to 200 000 km(2). We describe the compilation of a 35-year-long time series (1979-2013) of cyanobacteria surface accumulations in the Baltic Sea using multiple satellite sensors. This appears to be one of the longest satellite-based time series in biological oceanography. The satellite algorithm is based on remote sensing reflectance of the water in the red band, a measure of turbidity. Validation of the satellite algorithm using horizontal transects from a ship of opportunity showed the strongest relationship with phycocyanin fluorescence (an indicator of cyanobacteria), followed by turbidity and then by chlorophyll a fluorescence. The areal fraction with cyanobacteria accumulations (FCA) and the total accumulated area affected (TA) were used to characterize the intensity and extent of the accumulations. The fraction with cyanobacteria accumulations was calculated as the ratio of the number of detected accumulations to the number of cloud-free sea-surface views per pixel during the season (July-August). The total accumulated area affected was calculated by adding the area of pixels where accumulations were detected at least once during the season. The fraction with cyanobacteria accumulations and TA were correlated (R-2 = 0.55) and both showed large interannual and decadal-scale variations. The average FCA was significantly higher for the second half of the time series (13.8 %, 1997-2013) than for the first half (8.6 %, 1979-1996). However, that does not seem to represent a long-term trend but decadal-scale oscillations. Cyanobacteria accumulations were common in the 1970s and early 1980s (FCA between 11-17 %), but rare (FCA below 4 %) during 1985-1990; they increased again starting in 1991 and particularly in 1999, reaching maxima in FCA (similar to 25 %) and TA (similar to 210 000 km(2)) in 2005 and 2008. After 2008, FCA declined to more moderate levels (6-17 %). The timing of the accumulations has become earlier in the season, at a mean rate of 0.6 days per year, resulting in approximately 20 days advancement during the study period. The interannual variations in FCA are positively correlated with the concentration of chlorophyll a during July-August sampled at the depth of similar to 5 m by a ship of opportunity, but interannual variations in FCA are more pronounced as the coefficient of variation is over 5 times higher.

Sydeman, WJ, Thompson SA, Garcia-Reyes M, Kahru M, Peterson WT, Largier JL.  2014.  Multivariate ocean-climate indicators (MOCI) for the central California Current: Environmental change, 1990-2010. Progress in Oceanography. 120:352-369.   10.1016/j.pocean.2013.10.017   AbstractWebsite

Temporal environmental variability may confound interpretations of management actions, such as reduced fisheries mortality when Marine Protected Areas are implemented. To aid in the evaluation of recent ecosystem protection decisions in central-northern California, we designed and implemented multivariate ocean-climate indicators (MOCI) of environmental variability. To assess the validity of the MOCI, we evaluated interannual and longer-term variability in relation to previously recognized environmental variability in the region, and correlated MOCI to a suite of biological indicators including proxies for lower- (phytoplankton, copepods, krill), and upper-level (seabirds) taxa. To develop the MOCI, we selected, compiled, and synthesized 14 well-known atmospheric and oceanographic indicators of large-scale and regional processes (transport and upwelling), as well as local atmospheric and oceanic response variables such as wind stress, sea surface temperature, and salinity. We derived seasonally-stratified MOCI using principal component analysis. Over the 21-year study period (1990-2010), the ENSO cycle weakened while extra-tropical influences increased with a strengthening of the North Pacific Gyre Oscillation (NPGO) and cooling of the Pacific Decadal Oscillation (PDO). Correspondingly, the Northern Oscillation Index (NOI) strengthened, leading to enhanced upwelling-favorable wind stress and cooling of air and ocean surface temperatures. The seasonal MOCI related well to subarctic copepod biomass and seabird productivity, but poorly to chlorophyll-a concentration and krill abundance. Our results support a hypothesis of enhanced sub-arctic influence (transport from the north) and upwelling intensification in north-central California over the past two decades. Such environmental conditions may favor population growth for species with sub-arctic zoogeographic affinities within the central-northern California Current coastal ecosystem. (C) 2013 Elsevier Ltd. All rights reserved.