Publications

Export 7 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
S
Schwarz, JN, Kowalczuk P, Kaczmarek S, Cota GF, Mitchell BG, Kahru M, Chavez FP, Cunningham A, McKee D, Gege P, Kishino T, Phinney DA, Raine R.  2002.  Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia. 44:209-241. AbstractWebsite

The standard exponential model for CDOM absorption has been applied to data from diverse waters. Absorption at 440 nm (a(g)440) ranged between close to zero and 10 m(-1), and the slope of the semilogarithmic absorption spectrum over a minimum range of 400 to 440 nm (s440) ranged between < 0.01 and 0.04 nm(-1). NO relationship was found between a(g)440 or s440 and salinity. Except in the southern Baltic, s440 was found to have abroad distribution (0.0165 +/- 0.0035), suggesting that it should be introduced as an additional variable in bio-optical models when a(g)440 is large. An alternative model for CDOM absorption was applied to available high quality UV-visible absorption spectra from the Wisla river (Poland). This model assumes that, the CDOM absorption spectrum comprises distinct Gaussian absorption bands in the UV, similar to those of benzene. Five bands were fit to the data. The mean central energy of all hands was higher in early summer (E &SIM;7.2, 6.6, 6.4, 6.2 and 5.5 eV or 172, 188, 194, 200 and 226 nm)) than in winter. The higher energy bands were found to decay in both height and width with increasing salinity, while lower energy bands broadened with increasing salinity. 8440 was found to be correlated with shape parameters of the bands centred at 6.4 and 5.5 eV. While the exponential model is convenient for optical modelling and remote sensing applications, these results suggest that the Gaussian model offers a deeper understanding of chemical interactions affecting CDOM molecular structure.

K
Kahru, M, Horstmann U, Rud O.  1994.  Satellite detection of increased cyanobacteria blooms in the Baltic Sea: Natural fluctuation or ecosystem change? Ambio. Stockholm. 23:469-472. AbstractWebsite

Using data from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA series of satellites, an increase in the area covered by cyanobacteria blooms in the Baltic Sea was detected. The time series of satellite data covers a period of 12 years from 1982 to 1993. The total area covered by surface-floating cyanobacteria (blue-green algae) has increased in the 1990s, reaching over 62 000 km in 1992. From 1992, visible accumulations appeared for the first time in the Gulf of Riga and reappeared, in the western Gulf of Finland, after being absent from 1984. Conspicuous surface blooms were also present in the early 1980s, coincident with a period of sunny and calm summers. However, when the influence of variable sunshine duration is taken into account, the increase in 1991-1993 is still distinct, indicating significant changes in the Baltic environment. The causal factors for the increased cyanobacteria blooms are still not clear.

Kahru, M, Savchuk OP, Elmgren R.  2007.  Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Marine Ecology-Progress Series. 343:15-23.   10.3354/meps06943   AbstractWebsite

Owing to the potentially harmful character of nitrogen-fixing filamentous cyanobacterial blooms in the Baltic Sea, a capacity to predict their occurrence is of interest. We quantified the surface accumulations of cyanobacteria, mainly Nodularia spumigena, using ocean colour satellite data. The spatial and temporal frequency of the accumulations was mapped with an automated detection algorithm, using their high reflectance in the 670 or 555 nm bands. Coastal Zone Color Scanner (CZCS) data were used for a first period (1979 to 1984), and combined SeaWiFS and MODIS-Aqua data for a second period (1998 to 2006). The frequency of cyanobacterial accumulations (FCA) for each 1 km(2) pixel was calculated as the ratio of scenes with detected cyanobacteria to the number of valid cloud-free scenes in July-August. FCA varied greatly among years and the basins of the Baltic Sea. Mean FCA was 39% higher in the second period, but the increase was not statistically significant. The mean FCA for the whole Baltic was positively correlated with the residual phosphate (RP) concentration after the spring bloom in May-June. RP was a useful predictor of FCA in the coming summer, but could not predict the spatial pattern of the bloom. This was better explained by prevailing winds, with high FCA in the southwestern Baltic after northerly winds in July. It seems that, at the time of writing, useful FCA predictions can be made after the spring bloom, but only for the whole Baltic.

Kahru, M, Leppanen JM, Rud O.  1993.  Cyanobacterial Blooms Cause Heating of the Sea-Surface. Marine Ecology-Progress Series. 101:1-7.   10.3354/meps101001   AbstractWebsite

A series of AVHRR (Advanced Very High Resolution Radiometer) satellite images and simultaneous ship transects in July 1992 were used to show that surface accumulations of cyanobacteria (blue-green algae) in the southern Baltic Sea can cause local increases in the satellite-derived sea surface temperature (SST) by up to 1.5-degrees-C. The warmer SST is attributed to increased absorption of sunlight due to increased phytoplankton pigment concentration. The distribution of surface cyanobacterial accumulations detected as increased reflectance in the visible channel of the AVHRR satellite sensor was correlated with chlorophyll concentration at 5 m depth. Warm SST anomalies ('hot spots') appeared both in accumulations of surface-floating cyanobacteria and in areas of high chlorophyll concentration (detected by shipboard measurements). The 'hot spots' followed the detailed boundaries of the cyanobacterial plumes and probably represented a shallow, diurnally heated top layer that appeared by afternoon in conditions of low wind (2 m s-1) and weak mixing, disappeared during the night due to thermal convection and were hardly detectable on days with wind speed of 6 to 8 m s-1. The vertical extension of the top diurnally heated layer was probably less than 1 m and definitely less than 5 m, at which depth no temperature increase was detected. It is suggested that the day/night SST difference in low-wind conditions may be an indicator of near-surface phytoplankton pigment concentration.

Kahru, M, Leppanen JM, Rud O, Savchuk OP.  2000.  Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. Marine Ecology-Progress Series. 207:13-18.   10.3354/meps207013   AbstractWebsite

In the 1980s and 1990s prior to 1995, massive blooms of the diazotrophic cyanobacterium Nodularia spumigena occurred in the Baltic Sea Proper but never extended into the central and eastern Gulf of Finland. The absence of nitrogen-fixing cyanobacteria blooms in parts of the Baltic Sea with a high N:P ratio (e.g. Gulf of Finland) has been explained by their reduced competitive advantage in conditions of P limitation. Starting with the summer of 1995, massive blooms of N. spumigena occurred in the central and eastern Gulf of Finland, as detected by both satellite sensors and in situ monitoring. We propose that the eastward expansion of N. spumigena blooms was triggered by the 1993 saltwater inflow into the Baltic. With the arrival of the saline and oxygen-depleted waters in the Gulf of Finland in 1995, stratification in the bottom layers increased, oxygen concentrations decreased, and increased amounts of phosphate were released from the sediments. The subsequent decrease in the N:P ratio may have caused the reoccurring N, spumigena blooms.

Kahru, M, Di Lorenzo E, Manzano-Sarabia M, Mitchell BG.  2012.  Spatial and temporal statistics of sea surface temperature and chlorophyll fronts in the California Current. Journal of Plankton Research. 34:749-760.   10.1093/plankt/fbs010   AbstractWebsite

The statistics of sea-surface fronts detected with the automated histogram method were studied in the California Current using sea-surface temperature (SST) and chlorophyll-a concentration (Chl) images from various satellite sensors. Daily maps of fronts were averaged into monthly composites of front frequency (FF) spanning 29 years (19812009) for SST and 14 years (19972010) for Chl. The large-scale distributions of frontal frequency of both SST (FFsst) and of Chl (FFchl) had a 500700 km wide band of elevated values (47) along the coast that roughly coincided with the area of increased mesoscale eddy activity. FFsst and FFchl were positively correlated at monthly and seasonal frequencies, but the year-to-year variations were not significantly correlated. The long-period (1 year and longer) variability in FFsst is influenced by the large-scale SST gradient, while at shorter timescales the influence of the Coastal Upwelling Index is evident. In contrast with FFsst, FFchl variability is less related to the coherent large-scale forcing and has stronger sensitivity to local forcings in individual areas. Decadal-scale increasing trends in the frequency of both SST and Chl fronts were detected in the Ensenada Front area (general area of the A-Front study) and corresponded to, respectively, trends towards colder SST and increasing chlorophyll-a concentration.

C
Cloern, JE, Abreu PC, Carstensen J, Chauvaud L, Elmgren R, Grall J, Greening H, Johansson JOR, Kahru M, Sherwood ET, Xu J, Yin KD.  2016.  Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems. Global Change Biology. 22:513-529.   10.1111/gcb.13059   AbstractWebsite

Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.