Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Kahru, M, Lee ZP, Mitchell BG.  2017.  Contemporaneous disequilibrium of bio-optical properties in the Southern Ocean. Geophysical Research Letters. 44:2835-2842.   10.1002/2016gl072453   AbstractWebsite

Significant changes in satellite-detected net primary production (NPP, mgCm(-2)d(-1)) were observed in the Southern Ocean during 2011-2016: an increase in the Pacific sector and a decrease in the Atlantic sector. While no clear physical forcing was identified, we hypothesize that the changes in NPP were associated with changes in the phytoplankton community and reflected in the concomitant bio-optical properties. Satellite algorithms for chlorophyll a concentration (Chl a, mgm(-3)) use a combination of estimates of the remote sensing reflectance Rrs() that are statistically fitted to a global reference data set. In any particular region or point in space/time the estimate produced by the global mean algorithm can deviate from the true value. Reflectance anomaly (RA) is supposed to remove the first-order variability in Rrs() associated with Chl a and reveal bio-optical properties that are due to the composition of phytoplankton and associated materials. Time series of RA showed variability at multiple scales, including the life span of the sensor, multiyear and annual. Models of plankton functional types using estimated Chl a as input cannot be expected to correctly resolve regional and seasonal anomalies due to biases in the Chl a estimate that they are based on. While a statistical model using RA() time series can predict the times series of NPP with high accuracy (R-2=0.82) in both Pacific and Atlantic regions, the underlying mechanisms in terms of phytoplankton groups and the associated materials remain elusive.

Frants, M, Gille ST, Hatta M, Hiscock WT, Kahru M, Measures CI, Mitchell BG, Zhou M.  2013.  Analysis of horizontal and vertical processes contributing to natural iron supply in the mixed layer in southern Drake Passage. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 90:68-76.   10.1016/j.dsr2.2012.06.001   AbstractWebsite

Horizontal advection, vertical mixing, and mixed-layer entrainment all affect iron concentrations and biological productivity in the Ona Basin, near the Shackleton Transverse Ridge (STR) in southern Drake Passage. Trace metal sampling in the region indicates that dissolved iron concentrations are significantly higher on the continental shelf near the Antarctic Peninsula and the South Shetland Islands than they are in the deep waters away from the shelf. Comparisons between satellite-derived sea surface height (SSH) and Chlorophyll-a (Chl-a) levels in the Ona Basin show > 95% correlation between Chl-a concentrations and horizontal advection of these iron-rich shelf waters during the months of November and December for the years 1997-2010. However, no significant correlations are found for January-April, while high Chl-a concentrations in the Ona Basin persist through March. Enhanced vertical (diapycnal) mixing and mixed-layer entrainment are considered as alternative mechanisms for delivering iron into the Ona Basin mixed layer and sustaining the high Chl-a concentrations. Estimates of iron flux based on in situ measurements of dissolved iron concentrations suggest that diapycnal mixing alone can supply iron to the base of the mixed layer at a rate of 64 +/- 2 nmol m(-2) day(-1) during the summer. In addition, the summer mixed layer in the Ona Basin deepens from January to April, allowing for iron-rich water to be steadily entrained from below. Estimates based on monthly mixed-layer climatologies produce average daily entrainment rates ranging from 5 to 25 nmol m(-2) day(-1). While neither diapycnal mixing nor entrainment alone is always sufficient to meet the estimated iron demand for the Ona Basin bloom, numerical simulation suggests that the combined effect of the two processes can consistently supply sufficient iron to sustain the bloom. (c) 2012 Elsevier Ltd. All rights reserved.

Frants, M, Gille ST, Hewes CD, Holm-Hansen O, Kahru M, Lombrozo A, Measures CI, Mitchell BG, Wang HL, Zhou M.  2013.  Optimal multiparameter analysis of source water distributions in the Southern Drake Passage. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 90:31-42.   10.1016/j.dsr2.2012.06.002   AbstractWebsite

In order to evaluate the effects of horizontal advection on iron supply in the vicinity of the Shackleton Transverse Ridge (SIR) in the southern Drake Passage, the water composition in the region is estimated along the isopycnal containing the subsurface iron peak. Optimal Multiparameter (OMP) analysis of temperature, salinity, oxygen and nutrient data is used to estimate the water composition at CID stations sampled in summer 2004 and winter 2006. The highest iron concentrations in the Ona Basin are found below the mixed layer, both in summer and in winter. The water composition derived from the OMP analysis is consistent with a scenario in which iron-rich shelf waters from the South Shetland Islands and the Antarctic Peninsula are advected northward on the eastern side of the SIR, where they interact with the low-iron waters of the Antarctic Circumpolar Current (ACC) in the Ona Basin. The shelf waters and the ACC waters appear to interact through a stirring process without fully mixing, resulting in a filamented distribution that has also been inferred from the satellite data. To the west of the STR, the shelf waters are primarily confined to the continental shelf, and do not extend northwards. This source of water distribution is consistent with the idea that iron enters the Ona Basin from the continental shelf through advection along an isopycnal, resulting in an iron concentration peak occurring below the winter mixed layer in the Ona Basin. (c) 2012 Elsevier Ltd. All rights reserved.

Maiti, K, Charette MA, Buesseler KO, Kahru M.  2013.  An inverse relationship between production and export efficiency in the Southern Ocean. Geophysical Research Letters. 40:1557-1561.   10.1002/grl.50219   AbstractWebsite

In the past two decades, a number of studies have been carried out in the Southern Ocean to look at export production using drifting sediment traps and thorium-234 based measurements, which allows us to reexamine the validity of using the existing relationships between production, export efficiency, and temperature to derive satellite-based carbon export estimates in this region. Comparisons of in situ export rates with modeled rates indicate a two to fourfold overestimation of export production by existing models. Comprehensive analysis of in situ data indicates two major reasons for this difference: (i) in situ data indicate a trend of decreasing export efficiency with increasing production which is contrary to existing export models and (ii) the export efficiencies appear to be less sensitive to temperature in this region compared to the global estimates used in the existing models. The most important implication of these observations is that the simplest models of export, which predict increase in carbon flux with increasing surface productivity, may require additional parameters, different weighing of existing parameters, or separate algorithms for different oceanic regimes.

Holm-Hansen, O, Kahru M, Hewes CD.  2005.  Deep chlorophyll a maxima (DCMs) in pelagic Antarctic waters. II. Relation to bathymetric features and dissolved iron concentrations. Marine Ecology-Progress Series. 297:71-81.   10.3354/meps297071   AbstractWebsite

A deep chlorophyll a maximum (DCM) at depths between 60 and 90 m in waters south of the Antarctic Polar Front (APF) occurs only in pelagic waters where the chlorophyll a concentrations in the upper mixed layer (UML) are very low (generally < 0.2 mg m(-3)). Dissolved Fe concentrations in these waters with DCMs are also very low (generally < 0.2 nM) and are probably a limiting factor for phytoplankton growth and biomass. DCMs occur in the upper portion of the temperature minimum layer (TML), which is the winter residue of the Antarctic Surface Water (AASW). The higher phytoplankton biomass at these depths is thought to result from higher Fe concentrations in the winter remnant of the AASW as compared to that found in the overlying UML. A survey of the literature indicates that DCMs are located predominately over the deep ocean basins where enrichment of surface waters with Fe from either coastal sediments or from upwelling processes would be minimal. DCMs are not found in coastal waters or in pelagic regions where complex bottom topography causes upwelling of deep water with sufficiently high Fe concentrations to enhance surface chlorophyll a concentrations. Such enrichment of surface waters overlying or downstream of topographical seamounts or ridges that rise to within a few thousand meters of the surface usually results in elevated phytoplankton biomass in the UML and no DCM due to decreased solar irradiance in the TML. The effect of such enrichment of Fe in surface pelagic waters that results from upwelling processes is most pronounced in the Scotia Sea, in the Polar Frontal region downstream of South Georgia, over the Southwest Indian Ridge, over the Kerguelen Plateau, and over the Pacific Antarctic and Southeast Indian Ridges.