Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Smith, KL, Ruhl HA, Huffard CL, Messie M, Kahru M.  2018.  Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proceedings of the National Academy of Sciences of the United States of America. 115:12235-12240.   10.1073/pnas.1814559115   AbstractWebsite

Growing evidence suggests substantial quantities of particulate organic carbon (POC) produced in surface waters reach abyssal depths within days during episodic flux events. A 29-year record of in situ observations was used to examine episodic peaks in POC fluxes and sediment community oxygen consumption (SCOC) at Station M (NE Pacific, 4,000-m depth). From 1989 to 2017, 19% of POC flux at 3,400 m arrived during high-magnitude episodic events (>= mean + 2 sigma), and 43% from 2011 to 2017. From 2011 to 2017, when high-resolution SCOC data were available, time lags between changes in satellite-estimated export flux (EF), POC flux, and SCOC on the sea floor varied between six flux events from 0 to 70 days, suggesting variable remineralization rates and/or particle sinking speeds. Half of POC flux pulse events correlated with prior increases in EF and/or subsequent SCOC increases. Peaks in EF overlying Station M frequently translated to changes in POC flux at abyssal depths. A power-law model (Martin curve) was used to estimate abyssal fluxes from EF and midwater temperature variation. While the background POC flux at 3,400-m depth was described well by the model, the episodic events were significantly underestimated by similar to 80% and total flux by almost 50%. Quantifying episodic pulses of organic carbon into the deep sea is critical in modeling the depth and intensity of POC sequestration and understanding the global carbon cycle.

Kahru, M, Elmgren R, Di Lorenzo E, Savchuk O.  2018.  Unexplained interannual oscillations of cyanobacterial blooms in the Baltic Sea. Scientific Reports. 8   10.1038/s41598-018-24829-7   AbstractWebsite

Population oscillations in multi-species or even single species systems are well-known but have rarely been detected at the lower trophic levels in marine systems. Nitrogen fixing cyanobacteria are a major component of the Baltic Sea ecosystem and sometimes form huge surface accumulations covering most of the sea surface. By analysing a satellite-derived 39-year (1979-2017) data archive of surface cyanobacteria concentrations we have found evidence of strikingly regular interannual oscillations in cyanobacteria concentrations in the northern Baltic Sea. These oscillations have a period of similar to 3 years with a high-concentration year generally followed by one or two low-concentration years. Changes in abiotic factors known to influence the growth and survival of cyanobacteria could not provide an explanation for the oscillations. We therefore assume that these oscillations are intrinsic to the marine system, caused by an unknown, probably mainly biological mechanism that may be triggered by a combination of environmental factors. Interactions between different life cycle stages of cyanobacteria as well as between predator-prey or host-parasite are possible candidates for causing the oscillations.