Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Landry, MR, Ohman MD, Goericke R, Stukel MR, Barbeau KA, Bundy R, Kahru M.  2012.  Pelagic community responses to a deep-water front in the California Current Ecosystem: overview of the A-Front Study. Journal of Plankton Research. 34:739-748.   10.1093/plankt/fbs025   AbstractWebsite

In October 2008, we investigated pelagic community composition and biomass, from bacteria to fish, across a sharp frontal gradient overlying deep waters south of Point Conception, California. This northsouth gradient, which we called A-Front, was formed by the eastward flow of the California Current and separated cooler mesotrophic waters of coastal upwelling origin to the north, from warm oligotrophic waters of likely mixed subarcticsubtropical origin to the south. Plankton biomass and phytoplankton growth rates were two to three times greater on the northern side, and primary production rates were elevated 5-fold to the north. Compared with either of the adjacent waters, the frontal interface was strongly enriched and uniquely defined by a subsurface bloom of large diatoms, elevated concentrations of suspension-feeding zooplankton, high bioacoustical estimates of pelagic fish and enhanced bacterial production and phytoplankton biomass and photosynthetic potential. Such habitats, though small in areal extent, may contribute disproportionately and importantly to regional productivity, nutrient cycling, carbon fluxes and trophic ecology. As a general introduction to the A-Front study, we provide an overview of its design and implementation, a brief summary of major findings and a discussion of potential mechanisms of plankton enrichment at the front.

McQuatters-Gollop, A, Reid PC, Edwards M, Burkill PH, Castellani C, Batten S, Gieskes W, Beare D, Bidigare RR, Head E, Johnson R, Kahru M, Koslow JA, Pena A.  2011.  Is there a decline in marine phytoplankton? Nature. 472:E6-E7.   10.1038/nature09950   AbstractWebsite

Phytoplankton account for approximately 50% of global primary production, form the trophic base of nearly all marine ecosystems, are fundamental in trophic energy transfer and have key roles in climate regulation, carbon sequestration and oxygen production. Boyce et al. compiled a chlorophyll index by combining in situ chlorophyll and Secchi disk depth measurements that spanned a more than 100-year time period and showed a decrease in marine phytoplankton biomass of approximately 1% of the global median per year over the past century. Eight decades of data on phytoplankton biomass collected in the North Atlantic by the Continuous Plankton Recorder (CPR) survey, however, show an increase in an index of chlorophyll (Phytoplankton Colour Index) in both the Northeast and Northwest Atlantic basinsFig. 1), and other long-term time series, including the Hawaii Ocean Time-series (HOT)8, the Bermuda Atlantic Time Series (BATS)8 and the California Cooperative Oceanic Fisheries Investigations (CalCOFI)9 also indicate increased phytoplankton biomass over the last 20–50 years. These findings, which were not discussed by Boyce et al.1, are not in accordance with their conclusions and illustrate the importance of using consistent observations when estimating long-term trends.