Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Kahru, M, Jacox MG, Ohman MD.  2018.  CCE1: Decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California Current System during the 2014-2016 northeast Pacific warm anomalies. Deep-Sea Research Part I-Oceanographic Research Papers. 140:4-13.   10.1016/j.dsr.2018.04.007   AbstractWebsite

Oceanic fronts are sites of increased vertical exchange that are often associated with increased primary productivity, downward flux of organic carbon, and aggregation of plankton and higher trophic levels. Given the influence of fronts on the functioning of marine ecosystems, an improved understanding of the spatial and temporal variability of frontal activity is desirable. Here, we document changes in the frequency of sea-surface fronts and the surface concentration of chlorophyll-a (Chla) in the California Current System that occurred during the Northeast Pacific anomalous warming of 2014-2015 and El Nino of 2015-2016, and place those anomalies in the context of two decades of variability. Frontal frequency was detected with the automated histogram method using datasets of sea-surface temperature (SST) and Chla from multiple satellite sensors. During the anomalous 2014-2016 period, a drop in the frequency of fronts coincided with the largest negative Chla anomalies and positive SST anomalies in the whole period of satellite observations (1997-2017 for Chla and 1982-2017 for SST). These recent reductions in frontal frequency ran counter to a previously reported increasing trend, though it remains to be seen if they represent brief interruptions in that trend or a reversal that will persist going forward.

2013
Ohman, MD, Rudnick DL, Chekalyuk A, Davis RE, Feely RA, Kahru M, Kim HJ, Landry MR, Martz TR, Sabine CL, Send U.  2013.  Autonomous ocean measurements in the California Current ecosystem. Oceanography. 26:18-25. AbstractWebsite

Event-scale phenomena, of limited temporal duration or restricted spatial extent, often play a disproportionately large role in ecological processes occurring in the ocean water column. Nutrient and gas fluxes, upwelling and downwelling, transport of biogeochemically important elements, predator-prey interactions, and other processes may be markedly influenced by such events, which are inadequately resolved from infrequent ship surveys. The advent of autonomous instrumentation, including underwater gliders, profiling floats, surface drifters, enhanced moorings, coastal high-frequency radars, and satellite remote sensing, now provides the capability to resolve such phenomena and assess their role in structuring pelagic ecosystems. These methods are especially valuable when integrated together, and with shipboard calibration measurements and experimental programs.