Characteristic patterns of shelf circulation at the boundary between central and southern California

Winant, CD, Dever EP, Hendershott MC.  2003.  Characteristic patterns of shelf circulation at the boundary between central and southern California. Journal of Geophysical Research-Oceans. 108

Date Published:



bio-geographical, boundaries, coastal circulation, coastal ocean, continental-shelf, currents, drifter observations, north-america, Santa Barbara Channel, santa-barbara channel, sea-level, transport pathways, upwelling, view


[1] The coastal circulation in the Santa Barbara Channel (SBC) and the southern central California shelf is described in terms of three characteristic flow patterns. The upwelling pattern consists of a prevailing equatorward flow at the surface and at 45 m depth, except in the area immediately adjacent to the mainland coast in the SBC where the prevailing cyclonic circulation is strong enough to reverse the equatorward tendency and the flow is toward the west. In the surface convergent pattern, north of Point Conception, the surface flow is equatorward while the flow at 45 m depth is poleward. East of Point Conception, along the mainland coast, the flow is westward at all depths and there results a convergence at the surface between Point Conception and Point Arguello, with offshore transport over a distance on the order of 100 km. Beneath the surface layer the direction of the flow is consistently poleward. The relaxation pattern is almost the reverse of the upwelling pattern, with the exception that in the SBC the cyclonic circulation is such that the flow north of the Channel Islands remains eastward, although weak. The upwelling pattern is more likely to occur in March and April, after the spring transition, when the winds first become upwelling favorable and while the surface pressure is uniform. The surface convergent pattern tends to occur in summer, when the wind is still strong and persistently upwelling favorable, and the alongshore variable upwelling has build up alongshore surface pressure gradients. The relaxation pattern occurs in late fall and early winter, after the end of the period of persistent upwelling favorable winds.






Scripps Publication ID: