Publications

Export 5 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Gibson-Brown, JJ, Osoegawa K, McPherson JD, Waterston RH, de Jong PJ, Rokhsar DS, Holland LZ.  2003.  A proposal to sequence the amphioxus genome submitted to the joint genome institute of the US department of energy. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution. 300B:5-22.   10.1002/jez.b.00042   Website
Schubert, M, Holland LZ, Holland ND, Jacobs DK.  2000.  A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Molecular Biology and Evolution. 17:1896-1903. AbstractWebsite

The Wnt gene family is large, and new members are still being discovered. We constructed a parsimony tree for the Wnt family based on all 82 of the full-length sequences currently available. The inclusion of sequences from the cephalochordate amphioxus is especially useful in comprehensive gene trees, because the amphioxus genes in each subfamily often mark the base of the vertebrate diversification. We thus isolated full-length cDNAs of five amphioxus War genes (AmphiWnt1, AmphiWnt4, AmphiWnt7, AmphiWnt8, and AmphiWnt11) for addition to the overall War family tree. The analysis combined amino acid and nucleotide sequences (excluding third codon positions), taking into account 97% of the available data for each sequence. This combinatorial method had the advantage of generating a single most-parsimonious tree that was trichotomy-free. The reliability of the nodes was assessed by both jackknifing and Bremer support (decay index). A regression analysis revealed that branch length was strongly correlated with branch support, and possible reasons for this pattern are discussed. The tree topology suggested that in amphioxus, at least an AmphiWnt5 and an AmphiWnt10 have yet to be discovered.

Mazet, F, Yu JK, Liberles DA, Holland LZ, Shimeld SM.  2003.  Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene. 316:79-89.   10.1016/s0378-1119(03)00741-8   AbstractWebsite

The Forkhead or Fox gene family encodes putative transcription factors. There are at least four Fox genes in yeast, 16 in Drosophila melanogaster (Dm) and 42 in humans. Recently, vertebrate Fox genes have been classified into 17 groups named FoxA to FoxQ [Genes Dev. 14 (2000) 142]. Here, we extend this analysis to invertebrates, using available sequences from D. melanogaster, Anopheles gambiae (Ag), Caenorhabditis elegans (Ce), the sea squirt Ciona intestinalis (Ci) and amphioxus Branchiostoma floridae (Bf), from which we also cloned several Fox genes. Phylogenetic analyses lend support to the previous overall subclassification of vertebrate genes, but suggest that four subclasses (FoxJ, L, N and Q) could be further subdivided to reflect their relationships to invertebrate genes. We were unable to identify orthologs of Fox subclasses E, H, I, J, M and Q1 in D. melanogaster, A. gambiae or C. elegans, suggesting either considerable loss in ecdysozoans or the evolution of these subclasses in the deuterostome lineage. Our analyses suggest that the common ancestor of protostomes and deuterostomes had a minimum complement of 14 Fox genes. (C) 2003 Elsevier B.V. All rights reserved.

Holland, LZ, Cross NL.  1983.  The Ph within the Jelly Coat of Sea-Urchin Eggs. Developmental Biology. 99:258-260.   10.1016/0012-1606(83)90274-9   Website
Kozmik, Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, Holland LZ, Pestarino M, Benes V, Candiani S.  2007.  Pax-Six-Eya-Dach network during amphioxus development: Conservation in vitro but context specificity in vivo. Developmental Biology. 306:143-159.   10.1016/j.ydbio.2007.03.009   AbstractWebsite

The Drosophila retinal determination gene network occurs in animals generally as a Pax-Six-Eyes absent-Dachshund network (PSEDN). For amphioxus, we describe the complete network of nine PSEDN genes, four of which-AmphiSix1/2, AmphiSix4/5, AmphiSix3/6, and AmphiEya-are characterized here for the first time. For amphioxus, in vitro interactions among the genes and proteins of the network resemble those of other animals, except for the absence of Dach-Eya binding. Amphioxus PSEDN genes are expressed in highly stage- and tissue-specific patterns (sometimes conspicuously correlated with the local intensity of cell proliferation) in the gastrular organizer, notochord, somites, anterior central nervous system, peripheral nervous system, pharyngeal endoderm, and the likely homolog of the vertebrate adenohypophysis. In this last tissue, the anterior region expresses all three amphioxus Six genes and is a zone of active cell proliferation, while the posterior region expresses only AmphiPax6 and is non-proliferative. In summary, the topologies of animal PSEDNs, although considerably more variable than originally proposed, are conserved enough to be recognizable among species and among developing tissues; this conservation may reflect indispensable involvement of PSEDNs during the critically important early phases of embryology (e.g. in the control of mitosis, apoptosis, and cell/tissue motility). (C) 2007 Elsevier Inc. All rights reserved.