Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
Onai, T, Takai A, Setiamarga DHE, Holland LZ.  2012.  Essential role of Dkk3 for head formation by inhibiting Wnt/beta-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evolution & Development. 14:338-350.   10.1111/j.1525-142X.2012.00552.x   AbstractWebsite

To dissect the molecular mechanism of head specification in the basal chordate amphioxus, we investigated the function of Dkk3, a secreted protein in the Dickkopf family, which is expressed anteriorly in early embryos. Amphioxus Dkk3 has three domains characteristic of Dkk3 proteinsan N-terminal serine rich domain and two C-terminal cysteine-rich domains (CRDs). In addition, amphioxus Dkk3 has a TGF beta-receptor 2 domain, which is not present in Dkk3 proteins of other species. As vertebrate Dkk3 proteins have been reported to regulate either Nodal signaling or Wnt/beta-catenin signaling but not both in the same species, we tested the effects of Dkk3 on signaling by these two pathways in amphioxus embryos. Loss of function experiments with an anti-sense morpholino oligonucleotide (MO) against amphioxus Dkk3 resulted in larvae with truncated heads and concomitant loss of expression of anterior gene markers. The resemblance of the headless phenotype to that from upregulation of Wnt/beta-catenin signaling with BIO, a GSK3 beta inhibitor, suggested that Dkk3 might inhibit Wnt/beta-catenin signaling. In addition, the Dkk3 MO rescued dorsal structures in amphioxus embryos treated with SB505124, an inhibitor of Nodal signaling, indicating that amphioxus Dkk3 can also inhibit Nodal signaling. In vitro assays in Xenopus animal caps showed that Nodal inhibition is largely due to domains other than the TGF beta domain. We conclude that amphioxus Dkk3 regulates head formation by modulating both Wnt/beta-catenin and Nodal signaling, and that these functions may have been partitioned among various vertebrate lineages during evolution of Dkk3 proteins.

Beaster-Jones, L, Kaltenbach S, Koop D, Yuan SC, Chastain R, Holland LZ.  2008.  Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Development Genes and Evolution. 218:599-611.   10.1007/s00427-008-0257-5   AbstractWebsite

In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdh delta 2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch-Delta, Wnt/beta-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.

Holland, LZ, Holland ND.  2007.  A revised fate map for amphioxus and the evolution of axial patterning in chordates. Integrative and Comparative Biology. 47:360-372.   10.1093/icb/icm064   AbstractWebsite

The chordates include vertebrates plus two groups of invertebrates (the cephalochordates and tunicates). Previous embryonic fate maps of the cephalochordate amphioxus (Branchiostoma) were influenced by preconceptions that early development in amphioxus and ascidian tunicates should be fundamentally the same and that the early amphioxus embryo, like that of amphibians, should have ventral mesoderm. Although detailed cell lineage tracing in amphioxus has not been done because of limited availability of the embryos and because cleavage is radial and holoblastic with the blastomeres nearly equal in size and not tightly adherent until the mid-blastula stage, a compilation of data from gene expression and function, blastomere isolation and dye labeling allows a more realistic fate map to be drawn. The revised fate map is substantially different from that of ascidians. It shows (1) that the anterior pole of the amphioxus embryo is offset dorsally from the animal pole only by about 20 degrees, (2) that the ectoderm/mesendoderm boundary (the future rim of the blastopore) is at the equator of the blastula, which approximately coincides with the 3rd cleavage plane, and (3) that there is no ventral mesoderm during the gastrula stage. Involution or ingression of cells over the blastopore lip is negligible, and the blastopore, which is posterior, closes centripetally as if by a purse string. During the gastrula stage, the animal pole shifts ventrally, coming to lie about 20 degrees ventral to the anterior tip of the late gastrula/early neurula. Comparisons of the embryos of amphioxus and vertebrates indicate that in spite of large differences in the mechanics of cleavage and gastrulation, anterior/posterior and dorsal/ventral patterning occur by homologous genetic mechanisms. Therefore, the small, nonyolky embryo of amphioxus is probably a reasonable approximation of the basal chordate embryo before the evolution of determinate cleavage in the tunicates and the evolution large amounts of yolk in basal vertebrates.

Yu, JK, Satou Y, Holland ND, Shin-I T, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ.  2007.  Axial patterning in cephalochordates and the evolution of the organizer. Nature. 445:613-617.   10.1038/nature05472   AbstractWebsite

The organizer of the vertebrate gastrula is an important signalling centre that induces and patterns dorsal axial structures. Although a topic of long-standing interest, the evolutionary origin of the organizer remains unclear. Here we show that the gastrula of the cephalochordate amphioxus expresses dorsal/ventral (D/V) patterning genes (for example, bone morphogenetic proteins (BMPs), Nodal and their antagonists) in patterns reminiscent of those of their vertebrate orthlogues, and that amphioxus embryos, like those of vertebrates, are ventralized by exogenous BMP protein. In addition, Wnt-antagonists (for example, Dkks and sFRP2-like) are expressed anteriorly, whereas Wnt genes themselves are expressed posteriorly, consistent with a role for Wnt signalling in anterior/posterior (A/P) patterning. These results suggest evolutionary conservation of the mechanisms for both D/V and A/P patterning of the early gastrula. In light of recent phylogenetic analyses placing cephalochordates basally in the chordate lineage, we propose that separate signalling centres for patterning the D/V and A/P axes may be an ancestral chordate character.

Schubert, M, Holland LZ, Holland ND.  2000.  Characterization of an amphioxus Wnt gene, AmphiWnt11, with possible roles in myogenesis and tail outgrowth. Genesis. 27:1-5. AbstractWebsite

The full-length sequence and developmental expression of an amphioxus Wnt gene (AmphiWnt11) are described. A phylogenetic analysis of all known full-length Wnt11 sequences indicates that a gene duplication occurred at the base of the vertebrate Wnt11 clade. The developmental expression domains of AmphiWnt11 resemble those of Wnt11 homologs in vertebrates. The earliest detectable expression is transiently associated with the dorsal lip of the blastopore. At the neurula stage, AmphiWnt11 is expressed in myotomal muscle cells; however, AmphiWnt11 transcription is not associated with metameric pre-patterning prior to morphological segmentation. Finally, in amphioxus and the vertebrates, Wnt11 homologs are expressed in anteroventral ectoderm and in association with the tailbud and the tail fin. Thus, in amphioxus and lower vertebrates, the posterior expression of Wnt11 may be involved in tail fin outgrowth, and this ancient genetic program might have been cc-opted at least in part for lateral appendage development during vertebrate evolution. genesis 27: 1-5, 2000, (C) 2000 Wiley-Liss, Inc.

Schubert, M, Holland LZ, Panopoulou GD, Lehrach H, Holland ND.  2000.  Characterization of amphioxus AmphiWnt8: insights into the evolution of patterning of the embryonic dorsoventral axis. Evolution & Development. 2:85-92.   10.1046/j.1525-142x.2000.00047.x   AbstractWebsite

The full-length sequence and developmental expression of an amphioxus Wnt gene (AmphiWnt8 ) are described. In amphioxus embryos, the expression patterns of AmphiWnt8 suggest patterning roles in the forebrain, in the hindgut, and in the paraxial mesoderm that gives rise to the muscular somites. Phylogenetic analysis indicates that a single Wnt8 subfamily gene in an ancestral chordate duplicated early in vertebrate evolution into a Wnt8 clade and a Wnt8b clade. Coincident with this gene duplication, the functions of the ancestral AmphiWnt8-like gene appear to have been divided between vertebrate Wnt8b (exclusively neurogenic, especially in the forebrain) and vertebrate Wnt8 (miscellaneous, especially in early somitogenesis). Amphioxus AmphiWnt8 and its vertebrate Wnt8 homologs probably play comparable roles in the early dorsoventral patterning of the embryonic body axis.

Zhang, SC, Holland ND, Holland LZ.  1997.  Topographic changes in nascent and early mesoderm in amphioxus embryos studied by Dil labeling and by in situ hybridization for a Brachyury gene. Development Genes and Evolution. 206:532-535.   10.1007/s004270050083   AbstractWebsite

In amphioxus embryos, the nascent and early mesoderm (including chorda-mesoderm) was visualized by expression of a Brachyury gene (AmBra-2). A band of mesoderm is first detected encircling the earliest (vegetal plate stage) gastrula sub-equatorially. Soon thereafter, the vegetal plate invaginates. resulting in a cap-shaped gastrula with the mesoderm localized at the blastoporal lip and completely encircling the blastopore. As the gastrula stage progresses, DiI (a vital dye) labeling demonstrates that the entire mesoderm is internalized by a slight involution of the epiblast into the hypoblast all around the perimeter of the blastopore. Subsequently. during the early neurula stage, the internalized mesoderm undergoes anterior extension mid-dorsally (as notochord) and dorsolaterally (in paraxial regions when segments will later form). By the late neurula stage, AmBra-2 is no longer transcribed throughout the mesoderm as a whole; instead. expression is detectable only in the posterior mesoderm and in the notochord, but not in par axial mesoderm where definitive somites have formed.

Holland, PWH, Koschorz B, Holland LZ, Herrmann BG.  1995.  Conservation of Brachyury (T) genes in amphioxus and vertebrates: Developmental and evolutionary implications. Development. 121:4283-4291. AbstractWebsite

Homologues of the murine Brachyury (T) gene have been cloned from several vertebrates, and are implicated in mesoderm formation and in differentiation of the notochord, In contrast, the roles of the ascidian Brachyury gene may be restricted to presumptive notochord, To understand the evolution of Brachyury genes and their developmental roles, we have searched for homologues in amphioxus, representing the third chordate subphylum and the probable closest relative of the vertebrates. We report the isolation of two amphioxus cDNA clones with clear homology to Brachyury genes, and demonstrate that these derive from separate loci resultant from a recent gene duplication. This finding represents an exception to the emerging consensus of an archetypal prevertebrate genome in amphioxus, The spatial and temporal distribution of Brachyury transcripts during amphioxus development is remarkably similar to vertebrate Brachyury, in presumptive mesoderm, posterior mesoderm and the notochord, Gene expression extends throughout the anteroposterior axis of the notochord, despite the most rostral regions being a more recent specialization; it also persists into larval stages, despite differentiation into contractile tissue, We propose that roles of Brachyury in notochord differentiation are more ancient than roles in mesoderm formation, and that the latter are shared by cephalochordates and all vertebrates.