Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Wu, HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK.  2011.  Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Developmental Biology. 353:147-159.   10.1016/j.ydbio.2011.02.014   AbstractWebsite

The origin of germline cells was a crucial step in animal evolution. Therefore, in both developmental biology and evolutionary biology, the mechanisms of germline specification have been extensively studied over the past two centuries. However, in many animals, the process of germline specification remains unclear. Here, we show that in the cephalochordate amphioxus Branchiostoma floridae, the germ cell-specific molecular markers Vasa and Nanos become localized to the vegetal pole cytoplasm during oogenesis and are inherited asymmetrically by a single blastomere during cleavage. After gastrulation, this founder cell gives rise to a cluster of progeny that display typical characters of primordial germ cells (PGCs). Blastomeres separated at the two-cell stage grow into twin embryos, but one of the twins fails to develop this Vasa-positive cell population, suggesting that the vegetal pole cytoplasm is required for the formation of putative PGCs in amphioxus embryos. Contrary to the hypothesis that cephalochordates may form their PGCs by epigenesis, our data strongly support a preformation mode of germ cell specification in amphioxus. In addition to the early localization of their maternal transcripts in the putative PGCs, amphioxus Vasa and Nanos are also expressed zygotically in the tail bud, which is the posterior growth zone of amphioxus. Thus, in addition to PGC specification, amphioxus Vasa and Nanos may also function in highly proliferating somatic stem cells. (C) 2011 Elsevier Inc. All rights reserved.

Onai, T, Yu JK, Blitz IL, Cho KWY, Holland LZ.  2010.  Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Developmental Biology. 344:377-389.   10.1016/j.ydbio.2010.05.016   AbstractWebsite

The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity Knockdown and gain-of-function experiments show that these pathways act in opposition to one another Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution (C) 2010 Elsevier Inc. All rights reserved

Holland, PWH, Garcia-Fernandez J, Holland LZ, Williams NA, Holland ND.  1994.  The Molecular Control of Spatial Patterning in Amphioxus. Journal of the Marine Biological Association of the United Kingdom. 74:49-60. AbstractWebsite

The embryology of amphioxus (Chordata: Cephalochordata) has features in common with vertebrate embryology, reflecting a dose phylogenetic relationship between the two taxa. Amphioxus differs from vertebrates, however, in having less complex organogenesis and cranial morphogenesis, and less specialization along the anteroposterior body axis. Here we illustrate this by describing the embryology of an amphioxus species, Branchiostoma floridae. To gain further insight into the origins, evolutionary divergence and comparative embryology of these taxa, we are comparing the molecular control of embryonic development in amphioxus and vertebrates. For these analyses, we are focusing on homeobox genes: a diverse multigene family implicated in developmental control in many Metazoa. We report the results of PCR-based experiments which reveal that the amphioxus genome has homeobox genes from several recognized gene classes. The PCR experiments also suggest that amphioxus has fewer 'Hox' and 'Msx' class homeobox genes than do vertebrates. We suggest, therefore, that amphioxus may be a living descendant from an intermediate stage in the evolution of homeobox gene family complexity, and the complexity of vertebrate developmental control. The pattern of gene expression during embryogenesis has been described for one amphioxus homeobox gene of the Hox class. This gene is primarily expressed in the presumptive neural tube of amphioxus neurulae, later embryos and larvae, in a spatially-restricted manner. The expression data lead us to suggest that Hox genes are involved in the control of spatial patterning in the neural tube of amphioxus; the data are also interpreted as giving insight into possible homology between the amphioxus and vertebrate body plans.