Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Onai, T, Takai A, Setiamarga DHE, Holland LZ.  2012.  Essential role of Dkk3 for head formation by inhibiting Wnt/beta-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evolution & Development. 14:338-350.   10.1111/j.1525-142X.2012.00552.x   AbstractWebsite

To dissect the molecular mechanism of head specification in the basal chordate amphioxus, we investigated the function of Dkk3, a secreted protein in the Dickkopf family, which is expressed anteriorly in early embryos. Amphioxus Dkk3 has three domains characteristic of Dkk3 proteinsan N-terminal serine rich domain and two C-terminal cysteine-rich domains (CRDs). In addition, amphioxus Dkk3 has a TGF beta-receptor 2 domain, which is not present in Dkk3 proteins of other species. As vertebrate Dkk3 proteins have been reported to regulate either Nodal signaling or Wnt/beta-catenin signaling but not both in the same species, we tested the effects of Dkk3 on signaling by these two pathways in amphioxus embryos. Loss of function experiments with an anti-sense morpholino oligonucleotide (MO) against amphioxus Dkk3 resulted in larvae with truncated heads and concomitant loss of expression of anterior gene markers. The resemblance of the headless phenotype to that from upregulation of Wnt/beta-catenin signaling with BIO, a GSK3 beta inhibitor, suggested that Dkk3 might inhibit Wnt/beta-catenin signaling. In addition, the Dkk3 MO rescued dorsal structures in amphioxus embryos treated with SB505124, an inhibitor of Nodal signaling, indicating that amphioxus Dkk3 can also inhibit Nodal signaling. In vitro assays in Xenopus animal caps showed that Nodal inhibition is largely due to domains other than the TGF beta domain. We conclude that amphioxus Dkk3 regulates head formation by modulating both Wnt/beta-catenin and Nodal signaling, and that these functions may have been partitioned among various vertebrate lineages during evolution of Dkk3 proteins.

Yu, JK, Satou Y, Holland ND, Shin-I T, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ.  2007.  Axial patterning in cephalochordates and the evolution of the organizer. Nature. 445:613-617.   10.1038/nature05472   AbstractWebsite

The organizer of the vertebrate gastrula is an important signalling centre that induces and patterns dorsal axial structures. Although a topic of long-standing interest, the evolutionary origin of the organizer remains unclear. Here we show that the gastrula of the cephalochordate amphioxus expresses dorsal/ventral (D/V) patterning genes (for example, bone morphogenetic proteins (BMPs), Nodal and their antagonists) in patterns reminiscent of those of their vertebrate orthlogues, and that amphioxus embryos, like those of vertebrates, are ventralized by exogenous BMP protein. In addition, Wnt-antagonists (for example, Dkks and sFRP2-like) are expressed anteriorly, whereas Wnt genes themselves are expressed posteriorly, consistent with a role for Wnt signalling in anterior/posterior (A/P) patterning. These results suggest evolutionary conservation of the mechanisms for both D/V and A/P patterning of the early gastrula. In light of recent phylogenetic analyses placing cephalochordates basally in the chordate lineage, we propose that separate signalling centres for patterning the D/V and A/P axes may be an ancestral chordate character.

Yu, JK, Holland ND, Holland LZ.  2002.  An amphioxus winged helix/forkhead gene, AmphiFoxD: Insights into vertebrate neural crest evolution. Developmental Dynamics. 225:289-297.   10.1002/dvdy.10173   AbstractWebsite

During amphioxus development, the neural plate is bordered by cells expressing many genes with homologs involved in vertebrate neural crest induction. However, these amphioxus cells evidently lack additional genetic programs for the cell delaminations, migrations, and differentiations characterizing definitive vertebrate neural crest. We characterize an amphioxus winged helix/forkhead gene (AmphiFoxD) closely related to vertebrate FoxD genes. Phylogenetic analysis indicates that the AmphiFoxD is basal to vertebrate FoxD1, FoxD2, FoxD3, FoxD4, and FoxD5. One of these vertebrate genes (FoxD3) consistently marks neural crest during development. Early in amphioxus development, AmphiFoxD is expressed medially in the anterior neural plate as well as in axial (notochordal) and paraxial mesoderm; later, the gene is expressed in the somites, notochord, cerebral vesicle (diencephalon), and hindgut endoderm. However, there is never any expression in cells bordering the neural plate. We speculate that an AmphiFoxD homolog in the common ancestor of amphioxus and vertebrates was involved in histogenic processes in the mesoderm (evagination and delamination of the somites and notochord); then, in the early vertebrates, descendant paralogs of this gene began functioning in the presumptive neural crest bordering the neural plate to help make possible the delaminations and cell migrations that characterize definitive vertebrate neural crest. (C) 2002 Wiley-Liss, Inc.

Holland, LZ.  2002.  Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes Developmental Biology. 241:209-228.   10.1006/dbio.2001.0503   AbstractWebsite

In Xenopus, the canonical Wnt-signaling pathway acting through (beta-catenin functions both in establishing the dorso-ventral axis and in patterning the anterior-posterior axis. This pathway also acts in patterning the animal-vegetal axis in sea urchins. However, because sea urchin development is typically indirect, and adult sea urchins have pentamerous symmetry and lack a longitudinal nerve cord, it has not been clear how the roles of the canonical Wnt-signaling pathway in axial patterning in sea urchins and vertebrates are evolutionarily related. The developmental expression patterns of Notch, brachyury, caudal, and eight Wnt genes have now been determined for the invertebrate chordate amphioxus, which, like sea urchins, has an early embryo that gastrulates by invagination, but like vertebrates, has a later embryo with a dorsal hollow nerve cord that elongates posteriorly from a tail bud. Comparisons of amphioxus with other deuterostomes suggest that patterning of the ancestral deuterostome embryo along its anterior-posterior axis during the late blastula and subsequent stages involved a posterior signaling center including Writs, Notch, and transcription factors such as brachyury and caudal. In tunicate embryos, in which cell numbers are reduced and cell fates largely determined during cleavage stages, only vestiges of this signaling center are still apparent; these include localization of Wnt-5 mRNA to the posterior cytoplasm shortly after fertilization and localization of beta-catenin to vegetal nuclei during cleavage stages. Neither in tunicates nor in amphioxus is there any evidence that the canonical Wnt-signaling pathway functions in establishment of the dorso-ventral axis. Thus, roles for Wnt-signaling in dorso-ventral patterning of embryos may be a vertebrate innovation that arose in connection with the evolution of yolky eggs and gastrulation by extensive involution. (C) 2001 Elsevier Science.

Holland, LZ.  2000.  Body-plan evolution in the Bilateria: early antero-posterior patterning and the deuterostome-protostome dichotomy. Current Opinion in Genetics & Development. 10:434-442.   10.1016/s0959-437x(00)00109-x   AbstractWebsite

Recent molecular analyses reveal common themes in early antero-posterior patterning in the four major groups of invertebrate deuterostomes and vertebrates in spite of large differences in the mode of gastrulation. Comparisons with Drosophila and Cnidarians suggest a scheme for evolution of the Bilaterian body plan and emphasize the pressing need for similar studies in a wider variety of organisms, especially more basal protostomes.

Panopoulou, GD, Clark MD, Holland LZ, Lehrach H, Holland ND.  1998.  AmphiBMP2/4, an amphioxus bone morphogenetic protein closely related to Drosophila decapentaplegic and vertebrate BMP2 and BMP4: Insights into evolution of dorsoventral axis specification. Developmental Dynamics. 213:130-139.   10.1002/(sici)1097-0177(199809)213:1<130::aid-aja13>;2-z   AbstractWebsite

Amphioxus AmphiBMP2/4 appears to be a single gene closely related to vertebrate BMP2 and BMP4. In amphioxus embryos, the expression patterns of AmphiBMP2/4 suggest patterning roles in the ectodermal dorsoventral axis (comparable to dorsoventral axis establishment in the ectoderm by Drosophila decapentaplegic and vertebrate BMP4). In addition AmphiBMP2/4 may be involved in somite evagination, tail bud growth, pharyngeal differentiation (resulting in club-shaped gland morphogenesis), hindgut regionalization, differentiation of olfactory epithelium, patterning of the anterior central nervous system, and establishment of the heart primordium, One difference between the developmental role of amphioxus AmphiBMP2/4 and vertebrate BMP4 is that the former does not appear to be involved in the initial establishment of the dorsoventral polarity of the mesoderm, Dev. Dyn. 1998;213:130-139. (C) 1998 Wiley-Liss, Inc.