Publications

Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
Beaster-Jones, L, Kaltenbach S, Koop D, Yuan SC, Chastain R, Holland LZ.  2008.  Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Development Genes and Evolution. 218:599-611.   10.1007/s00427-008-0257-5   AbstractWebsite

In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdh delta 2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch-Delta, Wnt/beta-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.

2007
Kozmik, Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, Holland LZ, Pestarino M, Benes V, Candiani S.  2007.  Pax-Six-Eya-Dach network during amphioxus development: Conservation in vitro but context specificity in vivo. Developmental Biology. 306:143-159.   10.1016/j.ydbio.2007.03.009   AbstractWebsite

The Drosophila retinal determination gene network occurs in animals generally as a Pax-Six-Eyes absent-Dachshund network (PSEDN). For amphioxus, we describe the complete network of nine PSEDN genes, four of which-AmphiSix1/2, AmphiSix4/5, AmphiSix3/6, and AmphiEya-are characterized here for the first time. For amphioxus, in vitro interactions among the genes and proteins of the network resemble those of other animals, except for the absence of Dach-Eya binding. Amphioxus PSEDN genes are expressed in highly stage- and tissue-specific patterns (sometimes conspicuously correlated with the local intensity of cell proliferation) in the gastrular organizer, notochord, somites, anterior central nervous system, peripheral nervous system, pharyngeal endoderm, and the likely homolog of the vertebrate adenohypophysis. In this last tissue, the anterior region expresses all three amphioxus Six genes and is a zone of active cell proliferation, while the posterior region expresses only AmphiPax6 and is non-proliferative. In summary, the topologies of animal PSEDNs, although considerably more variable than originally proposed, are conserved enough to be recognizable among species and among developing tissues; this conservation may reflect indispensable involvement of PSEDNs during the critically important early phases of embryology (e.g. in the control of mitosis, apoptosis, and cell/tissue motility). (C) 2007 Elsevier Inc. All rights reserved.

2005
Holland, LZ.  2005.  Non-neural ectoderm is really neural: Evolution of developmental patterning mechanisms in the non-neural ectoderm of chordates and the problem of sensory cell homologies. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution. 304B:304-323.   10.1002/jez.21038   AbstractWebsite

In chordates, the ectoderm is divided into the neuroectoderm and the so-called non-neural ectoderm. In spite of its name, however, the non-neural ectoderm contains. numerous sensory cells. Therefore, the term "non-neural" ectoderm should be replaced by "general ectoderm." At least in amphioxus and tunicates and possibly in vertebrates as well, both the neuroectoderm and the general ectoderm are patterned anterior/posteriorly by mechanisms involving retinoic acid and Hox genes. In amphioxus and tunicates the ectodermal sensory cells, which have a wide range of ciliary and microvillar configurations, are mostly primary neurons sending axons to the CNS, although a minority lack axons. In contrast, vertebrate mechanosensory cells, called hair cells, are all secondary neurons that lack axons and have a characteristic eccentric cilium adjacent to a group of microvilli of graded lengths. It has been highly controversial whether the ectodermal sensory cells in the oral siphons of adult tunicates are homologous to vertebrate hair cells. In some species of tunicates, these cells appear to be secondary neurons, and microvillar and ciliary configurations of some of these cells approach those of vertebrate hair cells. However, none of the tunicate cells has all the characteristics of a hair cell, and there is a high degree of variation among ectodermal sensory cells within and between different species. Thus, similarities between the ectodermal sensory cells of any one species of tunicate and craniate hair cells may well represent convergent evolution rather than homology.

2004
Schubert, M, Holland ND, Escriva H, Holland LZ, Laudet V.  2004.  Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus). Proceedings of the National Academy of Sciences of the United States of America. 101:10320-10325.   10.1073/pnas.0403216101   AbstractWebsite

In developing chordates, retinoic acid (RA) signaling patterns the rostrocaudal body axis globally and affects gene expression locally in some differentiating cell populations. Here we focus on development of epidermal sensory neurons in an invertebrate chordate (amphioxus) to determine how RA signaling influences their rostrocaudal distribution and gene expression (for AmphiCoe, a neural precursor gene; for amphioxus islet and AmphiERR, two neural differentiation genes; and for AmphiHox1,-3, -4, and -6). Treatments with RA or an RA antagonist (BMS009) shift the distribution of developing epidermal neurons anteriorly or posteriorly, respectively. These treatments also affect gene expression patterns in the epidermal neurons, suggesting that RA levels may influence specification of neuronal subtypes. Although colinear expression of Hox genes is well known for the amphioxus central nervous system,we find an unexpected comparable colinearity for AmphiHox1, -3, -4, and -6 in the developing epidermis; moreover, RA levels affect the anteroposterior extent of these Hox expression domains, suggesting that RA signaling controls a colinear Hox code for anteroposterior patterning of the amphioxus epidermis. Thus, in amphioxus, the developing peripheral nervous system appears to be structured by mechanisms parallel to those that structure the central nervous system. One can speculate that, during evolution, an ancestral deuterostome that structured its panepidermal nervous system with an RA-influenced Hox code gave rise to chordates in which this patterning mechanism persisted within the epidermal elements of the peripheral nervous system and was transferred to the neuroectoderm as the central nervous system condensed dorsally.

2003
Mazet, F, Yu JK, Liberles DA, Holland LZ, Shimeld SM.  2003.  Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene. 316:79-89.   10.1016/s0378-1119(03)00741-8   AbstractWebsite

The Forkhead or Fox gene family encodes putative transcription factors. There are at least four Fox genes in yeast, 16 in Drosophila melanogaster (Dm) and 42 in humans. Recently, vertebrate Fox genes have been classified into 17 groups named FoxA to FoxQ [Genes Dev. 14 (2000) 142]. Here, we extend this analysis to invertebrates, using available sequences from D. melanogaster, Anopheles gambiae (Ag), Caenorhabditis elegans (Ce), the sea squirt Ciona intestinalis (Ci) and amphioxus Branchiostoma floridae (Bf), from which we also cloned several Fox genes. Phylogenetic analyses lend support to the previous overall subclassification of vertebrate genes, but suggest that four subclasses (FoxJ, L, N and Q) could be further subdivided to reflect their relationships to invertebrate genes. We were unable to identify orthologs of Fox subclasses E, H, I, J, M and Q1 in D. melanogaster, A. gambiae or C. elegans, suggesting either considerable loss in ecdysozoans or the evolution of these subclasses in the deuterostome lineage. Our analyses suggest that the common ancestor of protostomes and deuterostomes had a minimum complement of 14 Fox genes. (C) 2003 Elsevier B.V. All rights reserved.

Yu, JK, Holland ND, Holland LZ.  2003.  AmphiFoxQ2, a novel winged helix/forkhead gene, exclusively marks the anterior end of the amphioxus embryo. Development Genes and Evolution. 213:102-105.   10.1007/s00427-003-0302-3   AbstractWebsite

A full-length FoxQ-related gene (AmphiFoxQ2) was isolated from amphioxus. Expression is first detectable in the animal/anterior hemisphere at the mid blastula stage. The midpoint of this expression domain coincides with the anterior pole of the embryo and is offset dorsally by about 20degrees from the animal pole. During the gastrula stage, expression is limited to the anterior ectoderm. By the early neurula stage, expression remains in the anterior ectoderm and also appears in the adjacent anterior mesendoderm. By the early larval stages, expression is detectable in the anteriormost ectoderm and in the rostral tip of the notochord. AmphiFoxQ2 is never expressed anywhere except at the anterior tip of amphioxus embryos and larvae. This is the first gene known that exclusively marks the anterior pole of chordate embryos. It may, therefore, play an important role in establishing and/or maintaining the anterior/ posterior axis.

2001
Holland, LZ, Holland ND.  2001.  Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? Journal of Anatomy. 199:85-98.   10.1046/j.1469-7580.199.parts1-2.8.x   AbstractWebsite

Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

2000
Langlois, MC, Vanacker JM, Holland ND, Escriva H, Queva C, Laudet V, Holland LZ.  2000.  Amphicoup-TF, a nuclear orphan receptor of the lancelet Branchiostoma floridae, is implicated in retinoic acid signalling pathways. Development Genes and Evolution. 210:471-482.   10.1007/s004270000087   AbstractWebsite

In vertebrates, the orphan nuclear receptors of the COUP-TF group function as negative transcriptional regulators that inhibit the hormonal induction of target genes mediated by classical members of the nuclear hormone superfamily, such as the retinoic acid receptors (RARs) or the thyroid hormone receptors (TRs). To investigate the evolutionary conservation of the roles of COUP-TF receptors as negative regulators in the retinoid and thyroid hormone pathways, we have characterized AmphiCOUP-TF, the homologue of COUP-TFI and COUP-TFII, in the chordate amphioxus (Branchiostoma floridae), the closest living invertebrate relative of the vertebrates. Electrophoretic mobility shift assays (EMSA) showed that AmphiCOUP-TF binds to a wide variety of response elements, as do its vertebrate homologues. Furthermore, AmphiCOUP-TF is a transcriptional repressor that strongly inhibits retinoic acid-mediated transactivation. In situ hybridizations revealed expression of AmphiCOUP-TF in the nerve cord of late larvae, in a region corresponding to hindbrain and probably anterior spinal cord. Although the amphioxus nerve cord appears unsegmented at the gross anatomical level, this pattern reflects segmentation at the cellular level with stripes of expressing cells occurring adjacent to the ends and the centers of each myotomal segment, which may include visceral motor neurons and somatic motor neurons respectively, among other cells. A comparison of the expression pattern of AmphiCOUP-TF with those of its vertebrate homologues, suggests that the roles of COUP-TF in patterning of the nerve cord evolved prior to the split between the amphioxus and vertebrate lineages. Furthermore, in vitro data also suggest that AmphiCOUP-TF acts as a negative regulator of signalling by other nuclear receptors such as RAR, TR or ER.