Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Wu, HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK.  2011.  Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Developmental Biology. 353:147-159.   10.1016/j.ydbio.2011.02.014   AbstractWebsite

The origin of germline cells was a crucial step in animal evolution. Therefore, in both developmental biology and evolutionary biology, the mechanisms of germline specification have been extensively studied over the past two centuries. However, in many animals, the process of germline specification remains unclear. Here, we show that in the cephalochordate amphioxus Branchiostoma floridae, the germ cell-specific molecular markers Vasa and Nanos become localized to the vegetal pole cytoplasm during oogenesis and are inherited asymmetrically by a single blastomere during cleavage. After gastrulation, this founder cell gives rise to a cluster of progeny that display typical characters of primordial germ cells (PGCs). Blastomeres separated at the two-cell stage grow into twin embryos, but one of the twins fails to develop this Vasa-positive cell population, suggesting that the vegetal pole cytoplasm is required for the formation of putative PGCs in amphioxus embryos. Contrary to the hypothesis that cephalochordates may form their PGCs by epigenesis, our data strongly support a preformation mode of germ cell specification in amphioxus. In addition to the early localization of their maternal transcripts in the putative PGCs, amphioxus Vasa and Nanos are also expressed zygotically in the tail bud, which is the posterior growth zone of amphioxus. Thus, in addition to PGC specification, amphioxus Vasa and Nanos may also function in highly proliferating somatic stem cells. (C) 2011 Elsevier Inc. All rights reserved.

Kusakabe, R, Satoh N, Holland LZ, Kusakabe T.  1999.  Genomic organization and evolution of actin genes in the amphioxus Branchiostoma belcheri and Branchiostoma floridae. Gene. 227:1-10.   10.1016/s0378-1119(98)00608-8   AbstractWebsite

We previously described the cDNA. cloning and expression patterns of actin genes from amphioxus Branchiostoma floridae (Kusakabe, R., Kusakabe, T., Satoh, N., Holland, N.D., Holland, L.Z., 1997. Differential gene expression and intracellular mRNA localization of amphioxus actin isoforms throughout development: implications for conserved mechanisms of chordate development. Dev. Genes Evol. 207, 203-215). In the present paper, we report the characterization of cDNA clones for actin genes from a closely related species, Branchiostoma belcheri, and the exon-intron organization of B. floridae actin genes. Each of these two amphioxus species has two types of actin genes, muscle and cytoplasmic. The coding and non-coding regions of each type are well-conserved between the two species. A comparison of nucleotide sequences of muscle actin genes between the two species suggests that a gene conversion may have occurred between two B. floridae muscle actin genes BfMA1 and BfMA2. From the conserved positions of introns between actin genes of amphioxus and those of other deuterostomes, the evolution of deuterostome actin genes can be inferred. Thus, the presence of an intron at codon 328/329 in Vertebrate muscle and cytoplasmic actin genes but not in any known actin gene in other deuterostomes suggests that a gene conversion may have occurred between muscle and cytoplasmic actin genes during the early evolution of the vertebrates after separation from other deuterostomes. A Southern blot analysis of genomic DNA revealed that the amphioxus genome contains multiple muscle and cytoplasmic actin genes. Some of these actin genes seem to have arisen from recent duplication and gene conversion. Our findings suggest that the multiple genes encoding muscle and cytoplasmic actin isoforms arose independently in each of the three chordate lineages and that gene duplications and gene conversions established the extant actin multigene family during the evolution of chordates. (C) 1999 Elsevier Science B.V. All rights reserved.

Panopoulou, GD, Clark MD, Holland LZ, Lehrach H, Holland ND.  1998.  AmphiBMP2/4, an amphioxus bone morphogenetic protein closely related to Drosophila decapentaplegic and vertebrate BMP2 and BMP4: Insights into evolution of dorsoventral axis specification. Developmental Dynamics. 213:130-139.   10.1002/(sici)1097-0177(199809)213:1<130::aid-aja13>;2-z   AbstractWebsite

Amphioxus AmphiBMP2/4 appears to be a single gene closely related to vertebrate BMP2 and BMP4. In amphioxus embryos, the expression patterns of AmphiBMP2/4 suggest patterning roles in the ectodermal dorsoventral axis (comparable to dorsoventral axis establishment in the ectoderm by Drosophila decapentaplegic and vertebrate BMP4). In addition AmphiBMP2/4 may be involved in somite evagination, tail bud growth, pharyngeal differentiation (resulting in club-shaped gland morphogenesis), hindgut regionalization, differentiation of olfactory epithelium, patterning of the anterior central nervous system, and establishment of the heart primordium, One difference between the developmental role of amphioxus AmphiBMP2/4 and vertebrate BMP4 is that the former does not appear to be involved in the initial establishment of the dorsoventral polarity of the mesoderm, Dev. Dyn. 1998;213:130-139. (C) 1998 Wiley-Liss, Inc.