Export 17 results:
Sort by: Author Title Type [ Year  (Desc)]
Yue, JX, Kozmikova I, Ono H, Nossa CW, Kozmik Z, Putnam NH, Yu JK, Holland LZ.  2016.  Conserved noncoding elements in the most distant genera of cephalochordates: The Goldilocks principle. Genome Biology and Evolution. 8:2387-2405.   10.1093/gbe/evw158   AbstractWebsite

Cephalochordates, the sister group of vertebrates + tunicates, are evolving particularly slowly. Therefore, genome comparisons between two congeners of Branchiostoma revealed so many conserved noncoding elements (CNEs), that it was not clear how many are functional regulatory elements. To more effectively identify CNEs with potential regulatory functions, we compared noncoding sequences of genomes of the most phylogenetically distant cephalochordate genera, Asymmetron and Branchiostoma, which diverged approximately 120-160 million years ago. We found 113,070 noncoding elements conserved between the two species, amounting to 3.3% of the genome. The genomic distribution, target gene ontology, and enriched motifs of these CNEs all suggest that many of them are probably cis-regulatory elements. More than 90% of previously verified amphioxus regulatory elements were re-captured in this study. A search of the cephalochordate CNEs around 50 developmental genes inseveral vertebrate genomes revealed eight CNEs conserved between cephalochordates and vertebrates, indicating sequence conservation over > 500 million years of divergence. The function of five CNEs was tested in reporter assays in zebrafish, and one was also tested in amphioxus. All five CNEs proved to be tissue-specific enhancers. Taken together, these findings indicate that even though Branchiostoma and Asymmetron are distantly related, as they are evolving slowly, comparisons between them are likely optimal for identifying most of their tissue-specific cis-regulatory elements laying the foundation for functional characterizations and a better understanding of the evolution of developmental regulation in cephalochordates.

Holland, LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK.  2013.  Evolution of bilaterian central nervous systems: a single origin? Evodevo. 4   10.1186/2041-9139-4-27   AbstractWebsite

The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.

Wu, HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK.  2011.  Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Developmental Biology. 353:147-159.   10.1016/j.ydbio.2011.02.014   AbstractWebsite

The origin of germline cells was a crucial step in animal evolution. Therefore, in both developmental biology and evolutionary biology, the mechanisms of germline specification have been extensively studied over the past two centuries. However, in many animals, the process of germline specification remains unclear. Here, we show that in the cephalochordate amphioxus Branchiostoma floridae, the germ cell-specific molecular markers Vasa and Nanos become localized to the vegetal pole cytoplasm during oogenesis and are inherited asymmetrically by a single blastomere during cleavage. After gastrulation, this founder cell gives rise to a cluster of progeny that display typical characters of primordial germ cells (PGCs). Blastomeres separated at the two-cell stage grow into twin embryos, but one of the twins fails to develop this Vasa-positive cell population, suggesting that the vegetal pole cytoplasm is required for the formation of putative PGCs in amphioxus embryos. Contrary to the hypothesis that cephalochordates may form their PGCs by epigenesis, our data strongly support a preformation mode of germ cell specification in amphioxus. In addition to the early localization of their maternal transcripts in the putative PGCs, amphioxus Vasa and Nanos are also expressed zygotically in the tail bud, which is the posterior growth zone of amphioxus. Thus, in addition to PGC specification, amphioxus Vasa and Nanos may also function in highly proliferating somatic stem cells. (C) 2011 Elsevier Inc. All rights reserved.

Holland, LZ, Sower SA.  2010.  "Insights of Early Chordate Genomics: Endocrinology and Development in Amphioxus, Tunicates and Lampreys": Introduction to the symposium. Integrative and Comparative Biology. 50:17-21.   10.1093/icb/icq039   AbstractWebsite

This symposium focused on the evolution of chordate genomes, in particular, those events that occurred before the appearance of jawed vertebrates. The aim was to highlight insights that have come from the genome sequences of jawless chordates (lampreys, tunicates, and amphioxus) not only into evolution of chordate genomes, but also into the evolution of the organism. To this end, we brought together researchers whose recent work on these organisms spans the gap from genomics to the evolution of body forms and functions as exemplified by endocrine systems and embryonic development.

Koop, D, Holland ND, Semon M, Alvarez S, de Lera AR, Laudet V, Holland LZ, Schubert M.  2010.  Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior-posterior patterning of the chordate body plan. Developmental Biology. 338:98-106.   10.1016/j.ydbio.2009.11.016   AbstractWebsite

Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation. (C) 2009 Elsevier Inc. All rights reserved.

Holland, LZ.  2009.  Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nature Reviews Neuroscience. 10:736-746.   10.1038/nrn2703   AbstractWebsite

The vertebrate brain is highly complex with millions to billions of neurons. During development, the neural plate border region gives rise to the neural crest, cranial placodes and, in anamniotes, to Rohon-Beard sensory neurons, whereas the boundary region of the midbrain and hindbrain develops organizer properties. Comparisons of developmental gene expression and neuroanatomy between vertebrates and the basal chordate amphioxus, which has only thousands of neurons and lacks a neural crest, most placodes and a midbrain-hindbrain organizer, indicate that these vertebrate features were built on a foundation already present in the ancestral chordate. Recent advances in genomics have provided insights into the elaboration of the molecular toolkit at the invertebrate-vertebrate transition that may have facilitated the evolution of these vertebrate characteristics.

Putnam, NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez E, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS.  2008.  The amphioxus genome and the evolution of the chordate karyotype. Nature. 453:1064-U3.   10.1038/nature06967   AbstractWebsite

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic similar to 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.

Holland, LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DEK, Garcia-Fernandez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallbook F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu AL, Ye YZ, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PWH.  2008.  The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research. 18:1100-1111.   10.1101/gr.073676.107   AbstractWebsite

Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates-a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.

Yu, JK, Wang MC, Shin T, Kohara Y, Holland LZ, Satoh N, Satou Y.  2008.  A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae. Development Genes and Evolution. 218:723-727.   10.1007/s00427-008-0228-x   AbstractWebsite

Cephalochordates are the basal invertebrate chordates within the phylum Chordata. They are widely used as a model system for research in evolutionary developmental biology (EvoDevo) to understand the basic patterning mechanisms for the chordate body plan and the origin of vertebrates. Recently, the genome of the cephalochordate Branchiostoma floridae was sequenced, which further brings this organism to the front for comparative genomic studies. In this paper, we report the generation of large-scale 5'- and 3'-expressed sequence tags (ESTs) from B. floridae and the complementary deoxyribonucleic acid (cDNA) resource for this species. Both 5'- and 3'-ESTs were sequenced for approximately 140,000 cDNA clones derived from five developmental stages, and the cDNA clones were subsequently grouped into independent clusters using 3'-EST sequences. We identified 21,229 cDNA clusters, and each corresponds to a unique transcript species from B. floridae. We then chose 24,020 cDNA clones representing all of these 21,229 clusters to generate the "Branchiostoma floridae Gene Collection Release 1." We also constructed a database with a searchable interface for this EST dataset and the related information on "Branchiostoma floridae Gene Collection Release 1." This set of cDNA clones along with our cDNA database will serve as an important resource for future research in this basal chordate. This Gene Collection and the original 140,000 individual cDNA clones are available to the research community upon request.

Holland, LZ, Short S.  2008.  Gene Duplication, Co-Option and Recruitment during the Origin of the Vertebrate Brain from the Invertebrate Chordate Brain. Brain Behavior and Evolution. 72:91-105.   10.1159/000151470   AbstractWebsite

The brain of the basal chordate amphioxus has been compared to the vertebrate diencephalic forebrain, midbrain, hindbrain and spinal cord on the basis of the cell architecture from serial electron micrographs and patterns of developmental gene expression. In addition, genes specifying the neural plate and neural plate border as well as Gbx and Otx, that position the midbrain/hindbrain boundary (MHB), are expressed in comparable patterns in amphioxus and vertebrates. However, migratory neural crest is lacking in amphioxus, and although it has homologs of the genes that specify neural crest, they are not expressed at the edges of the amphioxus neural plate. Similarly, amphioxus has the genes that specify organizer properties of the MHB, but they are not expressed at the Gbx/Otx boundary as in vertebrates. Thus, the genetic machinery that created migratory neural crest and an MHB organizer was present in the ancestral chordate, but only co-opted for these new roles in vertebrates. Analyses with the amphioxus genome project strongly support the idea of two rounds of whole genome duplication with subsequent gene losses in the vertebrate lineage. Duplicates of developmental genes were preferentially retained. Although some genes apparently acquired roles in neural crest prior to these genome duplications, other key genes (e. g., FoxD3 in neural crest and Wnt1 at the MHB) were recruited into the respective gene networks after one or both genome duplications, suggesting that such an expansion of the genetic toolkit was critical for the evolution of these structures. The toolkit has also increased by alternative splicing. Contrary to the general rule, for at least one gene family with key roles in neural crest and the MHB, namely Pax genes, alternative splicing has not decreased subsequent to gene duplication. Thus, vertebrates have a much larger number of proteins available for mediating new functions in these tissues. The creation of new splice forms typically changes protein structure more than evolution of the protein after gene duplication. The functions of particular isoforms of key proteins expressed at the MHB and in neural crest have only just begun to be studied. Their roles in modulating gene networks may turn out to rival gene duplication for facilitating the evolution of structures such as neural crest and the MHB. Copyright (c) 2008 S. Karger AG, Basel

Beaster-Jones, L, Schubert M, Holland LZ.  2007.  Cis-regulation of the amphioxus engrailed gene: Insights into evolution of a muscle-specific enhancer. Mechanisms of Development. 124:532-542.   10.1016/j.mod.2007.06.002   AbstractWebsite

To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branch iostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8 kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2 kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Beaster-Jones, L, Horton AC, Gibson-Brown JJ, Holland ND, Holland LZ.  2006.  The amphioxus T-box gene, AmphiTbx15/18/22, illuminates the origins of chordate segmentation. Evolution & Development. 8:119-129.   10.1111/j.1525-142X.2006.00083.x   AbstractWebsite

Amphioxus and vertebrates are the only deuterostomes to exhibit unequivocal somitic segmentation. The relative simplicity of the amphioxus genome makes it a favorable organism for elucidating the basic genetic network required for chordate somite development. Here we describe the developmental expression of the somite marker, AmphiTbx15/18/22, which is first expressed at the mid-gastrula stage in dorsolateral mesendoderm. At the early neurula stage, expression is detected in the first three pairs of developing somites. By the mid-neurula stage, expression is downregulated in anterior somites, and only detected in the penultimate somite primordia. In early larvae, the gene is expressed in nascent somites before they pinch off from the posterior archenteron (tail bud). Integrating functional, phylogenetic and expression data from a variety of triploblast organisms, we have reconstructed the evolutionary history of the Tbx15/18/22 subfamily. This analysis suggests that the Tbx15/18/22 gene may have played a role in patterning somites in the last common ancestor of all chordates, a role that was later conserved by its descendents following gene duplications within the vertebrate lineage. Furthermore, the comparison of expression domains within this gene subfamily reveals similarities in the genetic bases of trunk and cranial mesoderm segmentation. This lends support to the hypothesis that the vertebrate head evolved from an ancestor possessing segmented cranial mesoderm.

Castro, LFC, Rasmussen SLK, Holland PWH, Holland ND, Holland LZ.  2006.  A Gbx homeobox gene in amphioxus: Insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary. Developmental Biology. 295:40-51.   10.1016/j.ydbio.2006.03.003   AbstractWebsite

In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed OtX2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved. (c) 2006 Elsevier Inc. All rights reserved.

Lin, HC, Holland LZ, Holland ND.  2006.  Expression of the AmphiTcf gene in amphioxus: Insights into the evolution of the TCF/LEF gene family during vertebrate evolution. Developmental Dynamics. 235:3396-3403.   10.1002/dvdy.20971   AbstractWebsite

T-cell factor (TCF) and lymphoid enhancer factors (LEF) genes encode proteins that are transcription factors mediating beta-catenin/Wnt signaling. Whereas mammals have four such genes, the Florida amphioxus (Branchiostoma floridae) apparently has only one such gene (AmphiTcF). From cleavage through early gastrula, cytoplasmic maternal transcripts of this gene are localized toward the animal pole. In gastrulae, AmphiTcf expression begins in the mesendoderm. In neurulae, there is expression in the pharynx, hindgut, anterior notochord, somites, and at the anterior end of the neural plate. In early larvae, expression is detectable in the floor of the diencephalon, notochord, tail bud, forming somites, pharynx, and ciliated pit (a presumed homolog of the vertebrate adenohypophysis). Phylogenetic analysis of TCF/LEF proteins placed AmphiTcf as the sister group of a clade comprising vertebrate Tcf1, Lef1, Tcf3, and Tcf4. Comparison of developmental expression for amphioxus AmphiTcf and vertebrate TCF/LEF genes indicates that this gene family has undergone extensive subfunctionalization and neofunctionalization during vertebrate evolution.

Schubert, M, Holland ND, Laudet V, Holland LZ.  2006.  A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Developmental Biology. 296:190-202.   10.1016/j.ydbio.2006.04.457   AbstractWebsite

Retinoic acid (RA) mediates both anterior/posterior patterning and neuronal specification in the vertebrate central nervous system (CNS). However, the molecular mechanisms downstream of RA are not well understood. To investigate these mechanisms, we used the invertebrate chordate amphioxus, in which the CNS, although containing only about 20,000 neurons in adults, like the vertebrate CNS, has a forebrain, midbrain, hindbrain, and spinal cord and is regionalized by RA-signaling. Here we show, first, that domains of genes with expression normally limited to diencephalon and midbrain are generally not affected by altered RA-signaling, second, that contrary to previous reports, not only Hox1, 3, and 4, but also Hox2 and Hox6 are collinearly expressed in the amphioxus CNS, and third, that collinear expression of all these Hox genes is controlled by RA-signaling. Finally, we show that Hox1 is involved in mediating both the role of RA-signaling in regionalization of the hindbrain and in specification of hindbrain motor neurons. Thus, morpholino knock-down of the single amphioxus Hox1 mimics the effects of treatments with an RA-antagonist. This analysis establishes RA-dependent regulation of collinear Hox expression as a feature common to the chordate CNS and indicates that the RA-Hox hierarchy functions both in proper anterior/posterior patterning of the developing CNS and in specification of neuronal identity. (c) 2006 Elsevier Inc. All rights reserved.

Yu, JK, Holland ND, Holland LZ.  2004.  Tissue-specific expression of FoxD reporter constructs in amphioxus embryos. Developmental Biology. 274:452-461.   10.1016/j.ydbio.2004.07.010   AbstractWebsite

Cephalochordates (amphioxus), the closest living invertebrate relatives of the vertebrates, are key to understanding the evolution of developmental mechanisms during the invertebrate-to-vertebrate transition. However, a major impediment to amphioxus as a model organism for developmental biology has been the inability to introduce transgenes or other macromolecules into the embryos. Here, we report the development of a reproducible method for microinjection of amphioxus eggs. Specifically, we show that expression of a LacZ reporter construct including 6.3 kb of AmphiFoxD upstream regulatory DNA recapitulates expression of the endogenous gene in the nerve cord, somites, and notochord. We have also identified the 1.6 kb at the 5' end of this region as essential for expression in the first two of these domains and the 4.7 kb at the 3' end as sufficient for expression in the notochord. This study, which is the first report of a method for introduction of large molecules such as DNA into amphioxus embryos, opens the way for studies of gene regulation and function in amphioxus and for comparative studies with vertebrates to understand the relationship between the extensive gene duplications that occurred within the vertebrate lineage and the evolution of vertebrate innovations such as neural crest. (C) 2004 Elsevier Inc. All rights reserved.

Lacalli, TC, Holland LZ.  1998.  The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. 353:1943-1967. AbstractWebsite

The development of the dorsal ganglion of the salp, Thalia democratica, is described from electron microscope reconstructions up to the stage of central neuropile formation. The central nervous system (CNS) rudiment is initially tubular with an open central canal. Early developmental events include: (i) the formation of a thick dorsal mantle of neuroblasts from which paired dorsal paraxial neuropiles arise; (ii) the differentiation of clusters of primary motor neurons along the ventral margin of the mantle; and (iii) the development from the latter of a series of peripheral nerves. The dorsal paraxial neuropiles ultimately connect to the large central neuropile, which develops later. Direct contact between neuroblasts and muscle appears to be involved in the development of some anterior nerves. The caudal nerves responsible for innervating more distant targets in the posterior part of the body develop without such contacts, which suggests that a different patterning mechanism may be employed in this part of the neuromuscular system. The results are compared with patterns of brain organization in other chordates. Because the salp CNS is symmetrical and generally less reduced than that of ascidian larvae, it is more easily compared with the CNS of amphioxus and vertebrates. The dorsal paraxial centres in the salp resemble the dorsolateral tectal centres in amphioxus in both position and organization; the central neuropile in salps likewise resembles the translumenal system in amphioxus. The neurons themselves are similar in that many of their neurites appear to be derived from the apical surface instead of the basal surface of the cell. Such neurons, with extensively developed apical neurites, may represent a new cell type that evolved in the earliest chordates in conjunction with the formation of translumenal or intralumenal integrative centres. In comparing the salp ganglion with vertebrates, we suggest that the main core of the ganglion is most like the mes-metencephalic region of the vertebrate brain, i.e. the zone occupied by the midbrain, isthmus, and anterior hindbrain. Counterparts of more anterior regions (forebrain) and posterior ones (segmented hindbrain) appear to be absent in salps, but are found in other tunicates, suggesting that evolution has acted quite differently on the main subdivisions of the CNS in different types of tunicates.