Publications

Export 165 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Yue, JX, Kozmikova I, Ono H, Nossa CW, Kozmik Z, Putnam NH, Yu JK, Holland LZ.  2016.  Conserved noncoding elements in the most distant genera of cephalochordates: The Goldilocks principle. Genome Biology and Evolution. 8:2387-2405.   10.1093/gbe/evw158   AbstractWebsite

Cephalochordates, the sister group of vertebrates + tunicates, are evolving particularly slowly. Therefore, genome comparisons between two congeners of Branchiostoma revealed so many conserved noncoding elements (CNEs), that it was not clear how many are functional regulatory elements. To more effectively identify CNEs with potential regulatory functions, we compared noncoding sequences of genomes of the most phylogenetically distant cephalochordate genera, Asymmetron and Branchiostoma, which diverged approximately 120-160 million years ago. We found 113,070 noncoding elements conserved between the two species, amounting to 3.3% of the genome. The genomic distribution, target gene ontology, and enriched motifs of these CNEs all suggest that many of them are probably cis-regulatory elements. More than 90% of previously verified amphioxus regulatory elements were re-captured in this study. A search of the cephalochordate CNEs around 50 developmental genes inseveral vertebrate genomes revealed eight CNEs conserved between cephalochordates and vertebrates, indicating sequence conservation over > 500 million years of divergence. The function of five CNEs was tested in reporter assays in zebrafish, and one was also tested in amphioxus. All five CNEs proved to be tissue-specific enhancers. Taken together, these findings indicate that even though Branchiostoma and Asymmetron are distantly related, as they are evolving slowly, comparisons between them are likely optimal for identifying most of their tissue-specific cis-regulatory elements laying the foundation for functional characterizations and a better understanding of the evolution of developmental regulation in cephalochordates.

Yue, JX, Holland ND, Holland LZ, Deheyn DD.  2016.  The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus). Scientific Reports. 6   10.1038/srep28350   AbstractWebsite

Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.

2015
Holland, LZ.  2015.  The origin and evolution of chordate nervous systems. Philosophical Transactions of the Royal Society B-Biological Sciences. 370   10.1098/rstb.2015.0048   AbstractWebsite

In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum.

Holland, LZ.  2015.  Genomics, evolution and development of amphioxus and tunicates: The Goldilocks principle. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution. 324:342-352.   10.1002/jez.b.22569   AbstractWebsite

Morphological comparisons among extant animals have long been used to infer their long-extinct ancestors for which the fossil record is poor or non-existent. For evolution of the vertebrates, the comparison has typically involved amphioxus and vertebrates. Both groups are evolving relatively slowly, and their genomes share a high level of synteny. Both vertebrates and amphioxus have regulative development in which cell fates become fixed only gradually during embryogenesis. Thus, their development fits a modified hourglass model in which constraints are greatest at the phylotypic stage (i.e., the late neurula/early larva), but are somewhat greater on earlier development than on later development. In contrast, the third group of chordates, the tunicates, which are sister group to vertebrates, are evolving rapidly. Constraints on evolution of tunicate genomes are relaxed, and they have discarded key developmental genes and organized much of their coding sequences into operons, which are transcribed as a single mRNA that undergoes trans-splicing. This contrasts with vertebrates and amphioxus, whose genomes are not organized into operons. Concomitantly, tunicates have switched to determinant development with very early fixation of cell fates. Thus, tunicate development more closely fits a progressive divergence model (shaped more like a wine glass than an hourglass) in which the constraints on the zygote and very early development are greatest. This model can help explain why tunicate body plans are so very diverse. The relaxed constraints on development after early cleavage stages are correlated with relaxed constraints on genome evolution. The question remains: which came first? J. Exp. Zool. (Mol. Dev. Evol.) 324B: 342-352, 2015. (c) 2014 Wiley Periodicals, Inc.

Holland, ND, Holland LZ, Holland PWH.  2015.  Scenarios for the making of vertebrates. Nature. 520:450-455.   10.1038/nature14433   AbstractWebsite

Over the past 200 years, almost every invertebrate phylum has been proposed as a starting point for evolving vertebrates. Most of these scenarios are outdated, but several are still seriously considered. The short-range transition from ancestral invertebrate chordates (similar to amphioxus and tunicates) to vertebrates is well accepted. However, longer-range transitions leading up to the invertebrate chordates themselves are more controversial. Opinion is divided between the annelid and the enteropneust scenarios, predicting, respectively, a complex or a simple ancestor for bilaterian animals. Deciding between these ideas will be facilitated by further comparative studies of multicellular animals, including enigmatic taxa such as xenacoelomorphs.

Holland, LZ.  2015.  Evolution of basal deuterostome nervous systems. Journal of Experimental Biology. 218:637-645.   10.1242/jeb.109108   AbstractWebsite

Understanding the evolution of deuterostome nervous systems has been complicated by the by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.

Holland, ND, Holland LZ, Heimberg A.  2015.  Hybrids between the Florida amphioxus (Branchiostoma floridae) and the Bahamas lancelet (Asymmetron lucayanum): Developmental morphology and chromosome counts. Biological Bulletin. 228:13-24. AbstractWebsite

The cephalochordate genera Branchiostoma and Asymmetron diverged during the Mesozoic Era. In spite of the long separation of the parental clades, eggs of the Florida amphioxus, B. floridae, when fertilized with sperm of the Bahamas lancelet, A. lucayanum (and vice versa), develop through embryonic and larval stages. The larvae reach the chordate phylotypic stage (i.e., the pharyngula), characterized by a dorsal nerve cord, notochord, perforate pharynx, and segmented trunk musculature. After about 2 weeks of larval development, the hybrids die, as do the A. lucayanum purebreds, although all were eating the same algal diet that sustains B. floridae purebreds through adulthood in the laboratory; it is thus unclear whether death of the hybrids results from incompatible parental genomes or an inadequate diet. The diploid chromosome count in A. lucayanum and B. floridae purebreds is, respectively, 34 and 38, whereas it is 36 in hybrids in either direction. The hybrid larvae exhibit several morphological characters intermediate between those of the parents, including the size of the preoral ciliated pit and the angles of deflection of the gill slits and anus from the ventral midline. Based on the time since the two parent clades diverged (120 or 160 million years, respectively, by nuclear and mitochondrial gene analysis), the cross between Branchiostoma and Asymmetron is the most extreme example of hybridization that has ever been unequivocally demonstrated among multicellular animals.

2014
Koop, D, Chen J, Theodosiou M, Carvalho JE, Alvarez S, de Lera AR, Holland LZ, Schubert M.  2014.  Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. Evodevo. 5   10.1186/2041-9139-5-36   AbstractWebsite

Background: Although chordates descend from a segmented ancestor, the evolution of head segmentation has been very controversial for over 150 years. Chordates generally possess a segmented pharynx, but even though anatomical evidence and gene expression analyses suggest homologies between the pharyngeal apparatus of invertebrate chordates, such as the cephalochordate amphioxus, and vertebrates, these homologies remain contested. We, therefore, decided to study the evolution of the chordate head by examining the molecular mechanisms underlying pharyngeal morphogenesis in amphioxus, an animal lacking definitive neural crest. Results: Focusing on the role of retinoic acid ( RA) in post-gastrulation pharyngeal morphogenesis, we found that during gastrulation, RA signaling in the endoderm is required for defining pharyngeal and non-pharyngeal domains and that this process involves active degradation of RA anteriorly in the embryo. Subsequent extension of the pharyngeal territory depends on the creation of a low RA environment and is coupled to body elongation. RA further functions in pharyngeal segmentation in a regulatory network involving the mutual inhibition of RA-and Tbx1/10-dependent signaling. Conclusions: These results indicate that the involvement of RA signaling and its interactions with Tbx1/10 in head segmentation preceded the evolution of neural crest and were thus likely present in the ancestral chordate. Furthermore, developmental comparisons between different deuterostome models suggest that the genetic mechanisms for pharyngeal segmentation are evolutionary ancient and very likely predate the origin of chordates.

Yue, JX, Yu JK, Putnam NH, Holland LZ.  2014.  The transcriptome of an Amphioxus, Asymmetron lucayanum, from the Bahamas: A window into chordate evolution. Genome Biology and Evolution. 6:2681-2696.   10.1093/gbe/evu212   AbstractWebsite

Cephalochordates, the sister group of tunicates plus vertebrates, have been called "living fossils" due to their resemblance to fossil chordates from Cambrian strata. The genome of the cephalochordate Branchiostoma floridae shares remarkable synteny with vertebrates and is free from whole-genome duplication. We performed RNA sequencing from larvae and adults of Asymmetron lucayanum, a cephalochordate distantly related to B. floridae. Comparisons of about 430 orthologous gene groups among both cephalochordates and 10 vertebrates using an echinoderm, a hemichordate, and a mollusk as outgroups showed that cephalochordates are evolving more slowly than the slowest evolving vertebrate known (the elephant shark), with A. lucayanum evolving even more slowly than B. floridae. Against this background of slow evolution, some genes, notably several involved in innate immunity, stand out as evolving relatively quickly. This may be due to the lack of an adaptive immune system and the relatively high levels of bacteria in the inshore waters cephalochordates inhabit. Molecular dating analysis including several time constraints revealed a divergence time of similar to 120 Ma for A. lucayanum and B. floridae. The divisions between cephalochordates and vertebrates, and that between chordates and the hemichordate plus echinoderm clade likely occurred before the Cambrian.

Striedter, GF, Belgard TG, Chen CC, Davis FP, Finlay BL, Gunturkun O, Hale ME, Harris JA, Hecht EE, Hof PR, Hofmann HA, Holland LZ, Iwaniuk AN, Jarvis ED, Karten HJ, Katz PS, Kristan WB, Macagno ER, Mitra PP, Moroz LL, Preuss TM, Ragsdale CW, Sherwood CC, Stevens CF, Stuttgen MC, Tsumoto T, Wilczynski W.  2014.  NSF workshop report: Discovering general principles of nervous system organization by comparing brain maps across species. Journal of Comparative Neurology. 522:1445-1453.   10.1002/cne.23568   AbstractWebsite

Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution. J. Comp. Neurol. 522:1445-1453, 2014. (c) 2014 Wiley Periodicals, Inc.

2013
Holland, LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK.  2013.  Evolution of bilaterian central nervous systems: a single origin? Evodevo. 4   10.1186/2041-9139-4-27   AbstractWebsite

The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.

Holland, LZ.  2013.  Evolution of new characters after whole genome duplications: Insights from amphioxus. Seminars in Cell & Developmental Biology. 24:101-109.   http://dx.doi.org/10.1016/j.semcdb.2012.12.007   AbstractWebsite

Additional copies of genes resulting from two whole genome duplications at the base of the vertebrates have been suggested as enabling the evolution of vertebrate-specific structures such as neural crest, a midbrain/hindbrain organizer and neurogenic placodes. These structures, however, did not evolve entirely de novo, but arose from tissues already present in an ancestral chordate. This review discusses the evolutionary history of co-option of old genes for new roles in vertebrate development as well as the relative contributions of changes in cis-regulation and in protein structure. Particular examples are the FoxD, FGF8/17/18 and Pax2/5/8 genes. Comparisons with invertebrate chordates (amphioxus and tunicates) paint a complex picture with co-option of genes into new structures occurring both after and before the whole genome duplications. In addition, while cis-regulatory changes are likely of primary importance in evolution of vertebrate-specific structures, changes in protein structure including alternative splicing are non-trivial.

2012
Holland, LZ.  2012.  Amphioxus genomics. Briefings in Functional Genomics. 11:87-88.   10.1093/bfgp/els014   Website
Onai, T, Takai A, Setiamarga DHE, Holland LZ.  2012.  Essential role of Dkk3 for head formation by inhibiting Wnt/beta-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evolution & Development. 14:338-350.   10.1111/j.1525-142X.2012.00552.x   AbstractWebsite

To dissect the molecular mechanism of head specification in the basal chordate amphioxus, we investigated the function of Dkk3, a secreted protein in the Dickkopf family, which is expressed anteriorly in early embryos. Amphioxus Dkk3 has three domains characteristic of Dkk3 proteinsan N-terminal serine rich domain and two C-terminal cysteine-rich domains (CRDs). In addition, amphioxus Dkk3 has a TGF beta-receptor 2 domain, which is not present in Dkk3 proteins of other species. As vertebrate Dkk3 proteins have been reported to regulate either Nodal signaling or Wnt/beta-catenin signaling but not both in the same species, we tested the effects of Dkk3 on signaling by these two pathways in amphioxus embryos. Loss of function experiments with an anti-sense morpholino oligonucleotide (MO) against amphioxus Dkk3 resulted in larvae with truncated heads and concomitant loss of expression of anterior gene markers. The resemblance of the headless phenotype to that from upregulation of Wnt/beta-catenin signaling with BIO, a GSK3 beta inhibitor, suggested that Dkk3 might inhibit Wnt/beta-catenin signaling. In addition, the Dkk3 MO rescued dorsal structures in amphioxus embryos treated with SB505124, an inhibitor of Nodal signaling, indicating that amphioxus Dkk3 can also inhibit Nodal signaling. In vitro assays in Xenopus animal caps showed that Nodal inhibition is largely due to domains other than the TGF beta domain. We conclude that amphioxus Dkk3 regulates head formation by modulating both Wnt/beta-catenin and Nodal signaling, and that these functions may have been partitioned among various vertebrate lineages during evolution of Dkk3 proteins.

Short, S, Kozmik Z, Holland LZ.  2012.  The Function and Developmental Expression of Alternatively Spliced Isoforms of Amphioxus and Xenopus laevis Pax2/5/8 Genes: Revealing Divergence at the Invertebrate to Vertebrate Transition . Journal of Experimental Zoology Part B-Molecular and Developmental Evolution. 318B(7):555-571.   10.1002/jez.b.22460  
Holland, LZ, Onai T.  2012.  Early development of cephalochordates (amphioxus). Wiley Interdisciplinary Reviews: Developmental Biology. 1:167-183.: John Wiley & Sons, Inc.   10.1002/wdev.11   AbstractWebsite

The Phylum Chordata includes three groups—Vertebrata, Tunicata, and Cephalochordata. In cephalochordates, commonly called amphioxus or lancelets, which are basal in the Chordata, the eggs are small and relatively non-yolky. As in vertebrates, cleavage is indeterminate with cell fates determined gradually as development proceeds. The oocytes are attached to the ovarian follicle at the animal pole, where the oocyte nucleus is located. The cytoplasm at the opposite side of the egg, the vegetal pole, contains the future germ plasm or pole plasm, which includes determinants of the germline. After fertilization, additional asymmetries are established by movements of the egg and sperm nuclei, resulting in a concentration of mitochondria at one side of the animal hemisphere. This may be related to establishment of the dorsal/ventral axis. Patterning along the embryonic axes is mediated by secreted signaling proteins. Dorsal identity is specified by Nodal/Vg1 signaling, while during the gastrula stage, opposition between Nodal/Vg1 and BMP signaling establishes dorsal/anterior (i.e., head) and ventral/posterior (i.e., trunk/tail) identities, respectively. Wnt/β-catenin signaling specifies posterior identity while retinoic acid signaling specifies positions along the anterior/posterior axis. These signals are further modulated by a number of secreted antagonists. This fundamental patterning mechanism is conserved, with some modifications, in vertebrates. WIREs Dev Biol 2012, 1:167–183. doi: 10.1002/wdev.11 For further resources related to this article, please visit the WIREs website.

2011
Koop, D, Holland LZ, Setiamarga D, Schubert M, Holland ND.  2011.  Tail regression induced by elevated retinoic acid signaling in amphioxus larvae occurs by tissue remodeling, not cell death. Evolution & Development. 13:427-435.   10.1111/j.1525-142X.2011.00501.x   AbstractWebsite

The vitamin A derived morphogen retinoic acid (RA) is known to function in the regulation of tissue proliferation and differentiation. Here, we show that exogenous RA applied to late larvae of the invertebrate chordate amphioxus can reverse some differentiated states. Although treatment with the RA antagonist BMS009 has no obvious effect on late larvae of amphioxus, administration of excess RA alters the morphology of the posterior end of the body. The anus closes over, and gut contents accumulate in the hindgut. In addition, the larval tail fin regresses, although little apoptosis takes place. This fin normally consists of columnar epidermal cells, each characterized by a ciliary rootlet running all the way from an apical centriole to the base of the cell and likely contributing substantial cytoskeletal support. After a few days of RA treatment, the rootlet becomes disrupted, and the cell shape changes from columnar to cuboidal. Transmission electron microscopy (TEM) shows fragments of the rootlet in the basal cytoplasm of the cuboidal cell. A major component of the ciliary rootlet in amphioxus is the protein Rootletin, which is encoded by a single AmphiRootletin gene. This gene is highly expressed in the tail epithelial cells of control larvae, but becomes downregulated after about a day of RA treatment, and the breakup of the ciliary rootlet soon follows. The effect of excess RA on these epidermal cells of the larval tail in amphioxus is unlike posterior regression in developing zebrafish, where elevated RA signaling alters connective tissues of mesodermal origin. In contrast, however, the RA-induced closure of the amphioxus anus has parallels in the RA-induced caudal regression syndrome of mammals.

Wu, HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK.  2011.  Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Developmental Biology. 353:147-159.   10.1016/j.ydbio.2011.02.014   AbstractWebsite

The origin of germline cells was a crucial step in animal evolution. Therefore, in both developmental biology and evolutionary biology, the mechanisms of germline specification have been extensively studied over the past two centuries. However, in many animals, the process of germline specification remains unclear. Here, we show that in the cephalochordate amphioxus Branchiostoma floridae, the germ cell-specific molecular markers Vasa and Nanos become localized to the vegetal pole cytoplasm during oogenesis and are inherited asymmetrically by a single blastomere during cleavage. After gastrulation, this founder cell gives rise to a cluster of progeny that display typical characters of primordial germ cells (PGCs). Blastomeres separated at the two-cell stage grow into twin embryos, but one of the twins fails to develop this Vasa-positive cell population, suggesting that the vegetal pole cytoplasm is required for the formation of putative PGCs in amphioxus embryos. Contrary to the hypothesis that cephalochordates may form their PGCs by epigenesis, our data strongly support a preformation mode of germ cell specification in amphioxus. In addition to the early localization of their maternal transcripts in the putative PGCs, amphioxus Vasa and Nanos are also expressed zygotically in the tail bud, which is the posterior growth zone of amphioxus. Thus, in addition to PGC specification, amphioxus Vasa and Nanos may also function in highly proliferating somatic stem cells. (C) 2011 Elsevier Inc. All rights reserved.

2010
Holland, ND, Holland LZ.  2010.  Laboratory Spawning and Development of the Bahama Lancelet, Asymmetron lucayanum (Cephalochordata): Fertilization Through Feeding Larvae. Biological Bulletin. 219:132-141. AbstractWebsite

Here we report on spawning and development of the Bahama lancelet, Asymmetron lucayanum. Ripe adults collected in Bimini spawned the same evening when placed in the dark for 90 minutes. The developmental morphology is described from whole mounts and histological sections. A comparison between development in A symmetron and the better known cephalochordate genus Branchiostoma reveals similarities during the early embryonic stages but deviations by the late embryonic and early larval stages. Thus, the initial positions of the mouth, first gill slit, and anus differ between the two genera. Even more strikingly, Hatschek's right and left diverticula, which arise by enterocoely at the anterior end of the pharynx in Branchiostoma, never form during Asymmetron development. In Branchiostoma, these diverticula become the rostral coelom and preoral pit. In Asymmetron, by contrast, homologs of the rostral coelom and preoral pit form by schizocoely within an anterior cell cluster of unproven (but likely endodermal) origin. Proposing evolutionary scenarios to account for developmental differences between Asymmetron and Branchiostoma is currently hampered by uncertainty over which genus is basal in the cephalochordates. A better understanding of developmental diversity within the cephalochordates will require phylogenetic analyses based on nuclear genes and the genome sequence of an Asymmetron species.

Holland, LZ.  2010.  BIO - Linda Z. Holland. Evolution & Development. 12:109-112.   10.1111/j.1525-142X.2010.00397.x   Website
Holland, LZ, Short S.  2010.  Alternative Splicing in Development and Function of Chordate Endocrine Systems: A Focus on Pax Genes. Integrative and Comparative Biology. 50:22-34.   10.1093/icb/icq048   AbstractWebsite

Genome sequencing has facilitated an understanding of gene networks but has also shown that they are only a small part of the answer to the question of how genes translate into a functional organism. Much of the answer lies in epigenetics-heritable traits not directly encoded by the genome. One such phenomenon is alternative splicing, which affects over 75% of protein coding genes and greatly amplifies the number of proteins. Although it was postulated that alternative splicing and gene duplication are inversely proportional and, therefore, have similar effects on the size of the proteome, for ancient duplications such as occurred in the Pax family of transcription factors, that is not necessarily so. The importance of alternative splicing in development and physiology is only just coming to light. However, several techniques for studying isoform functions both in vitro and in vivo have been recently developed. As examples of what is known and what is yet to be discovered, this review focuses on the evolution and roles of the Pax family of transcription factors in development and on alternative splicing of endocrine genes and the factors that regulate them.

Holland, LZ, Sower SA.  2010.  "Insights of Early Chordate Genomics: Endocrinology and Development in Amphioxus, Tunicates and Lampreys": Introduction to the symposium. Integrative and Comparative Biology. 50:17-21.   10.1093/icb/icq039   AbstractWebsite

This symposium focused on the evolution of chordate genomes, in particular, those events that occurred before the appearance of jawed vertebrates. The aim was to highlight insights that have come from the genome sequences of jawless chordates (lampreys, tunicates, and amphioxus) not only into evolution of chordate genomes, but also into the evolution of the organism. To this end, we brought together researchers whose recent work on these organisms spans the gap from genomics to the evolution of body forms and functions as exemplified by endocrine systems and embryonic development.

Koop, D, Holland ND, Semon M, Alvarez S, de Lera AR, Laudet V, Holland LZ, Schubert M.  2010.  Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior-posterior patterning of the chordate body plan. Developmental Biology. 338:98-106.   10.1016/j.ydbio.2009.11.016   AbstractWebsite

Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation. (C) 2009 Elsevier Inc. All rights reserved.

Onai, T, Yu JK, Blitz IL, Cho KWY, Holland LZ.  2010.  Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Developmental Biology. 344:377-389.   10.1016/j.ydbio.2010.05.016   AbstractWebsite

The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity Knockdown and gain-of-function experiments show that these pathways act in opposition to one another Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution (C) 2010 Elsevier Inc. All rights reserved