Early development of cephalochordates (amphioxus)

Citation:
Holland, LZ, Onai T.  2012.  Early development of cephalochordates (amphioxus). Wiley Interdisciplinary Reviews: Developmental Biology. 1:167-183.: John Wiley & Sons, Inc.

Abstract:

The Phylum Chordata includes three groups—Vertebrata, Tunicata, and Cephalochordata. In cephalochordates, commonly called amphioxus or lancelets, which are basal in the Chordata, the eggs are small and relatively non-yolky. As in vertebrates, cleavage is indeterminate with cell fates determined gradually as development proceeds. The oocytes are attached to the ovarian follicle at the animal pole, where the oocyte nucleus is located. The cytoplasm at the opposite side of the egg, the vegetal pole, contains the future germ plasm or pole plasm, which includes determinants of the germline. After fertilization, additional asymmetries are established by movements of the egg and sperm nuclei, resulting in a concentration of mitochondria at one side of the animal hemisphere. This may be related to establishment of the dorsal/ventral axis. Patterning along the embryonic axes is mediated by secreted signaling proteins. Dorsal identity is specified by Nodal/Vg1 signaling, while during the gastrula stage, opposition between Nodal/Vg1 and BMP signaling establishes dorsal/anterior (i.e., head) and ventral/posterior (i.e., trunk/tail) identities, respectively. Wnt/β-catenin signaling specifies posterior identity while retinoic acid signaling specifies positions along the anterior/posterior axis. These signals are further modulated by a number of secreted antagonists. This fundamental patterning mechanism is conserved, with some modifications, in vertebrates. WIREs Dev Biol 2012, 1:167–183. doi: 10.1002/wdev.11 For further resources related to this article, please visit the WIREs website.

Notes:

n/a

Website

DOI:

10.1002/wdev.11