Publications

Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Shaar, R, Ben-Yosef E, Ron H, Tauxe L, Agnon A, Kessel R.  2011.  Geomagnetic field intensity: How high can it get? How fast can it change? Constraints from Iron Age copper slag Earth and Planetary Science Letters. 301:297-306.   10.1016/j.epsl.2010.11.013   AbstractWebsite

The intensity of the geomagnetic field varies over different time scales. Yet, constraints on the maximum intensity of the field as well as for its maximum rate of change are inadequate due to poor temporal resolution and large uncertainties in the geomagnetic record. The purpose of this study is to place firm limits on these fundamental properties by constructing a high-resolution archaeointensity record of the Levant from the 11th century to the early 9th century BCE, a period over which the geomagnetic field reached its maximum intensity in Eurasia over the past 50,000 years. We investigate a (14)C-dated sequence of ten layers of slag material, which accumulated within an ancient industrial waste mound of an Iron Age copper-smelting site in southern Israel. Depositional stratigraphy constrains relative ages of samples analyzed for paleointensity, and (14)C dates from different horizons of the mound constrain the age of the whole sequence. The analysis yielded 35 paleointenisty data points with accuracy better than 94% and precision better than 6%, covering a period of less than 350 years, most probably 200 years. We construct a new high-resolution quasi-continuous archaeointensity curve of the Levant that displays two dramatic spikes in geomagnetic intensity, each corresponding to virtual axial dipole moment (VADM) in excess of 200 ZAm(2). The geomagnetic spikes rise and fall over a period of less than 30 years and are associated with VADM fluctuations of at least 70 ZAm2. Thus, the Levantine archaeomagnetic record places new constraints on maximum geomagnetic intensity as well as for its rate of change. Yet, it is not clear whether the geomagnetic spikes are local non-dipolar features or a geomagnetic dipolar phenomenon. (C) 2010 Elsevier B.V. All rights reserved.

2009
Ben-Yosef, E, Tauxe L, Levy TE, Shaar R, Ron H, Najjar M.  2009.  Geomagnetic intensity spike recorded in high resolution slag deposit in Southern Jordan. Earth and Planetary Science Letters. 287:529-539.   10.1016/j.epsl.2009.09.001   AbstractWebsite

In paleomagnetism, periods of high field intensity have been largely ignored in favor of the more spectacular directional changes associated with low field intensity periods of excursions and reversals. Hence, questions such as how strong the field can get and how fast changes occur are still open. In this paper we report on data obtained from an archaeometallurgical excavation in the Middle East, designed specifically for archaeomagnetic sampling. We measured 342 specimens from 72 samples collected from a 6.1 m mound of well stratified copper production debris at the early Iron Age (12th-9th centuries BCE) site of Khirbat en-Nahas in Southern Jordan. Seventeen samples spanning 200 yr yielded excellent archaeointensity results that demonstrate rapid changes in field intensity in a period of overall high field values. The results display a remarkable spike in field strength, with sample mean values of over 120 mu T (compared to the current field strength of 44 mu T). A suite of 13 radiocarbon dates intimately associated with our samples, tight control of sample location and relative stratigraphy provide tight constraints on the rate and magnitude of changes in archaeomagnetic field intensities. (C) 2009 Elsevier B.V. All rights reserved.

2008
Ben-Yosef, E, Tauxe L, Ron H, Agnon A, Avner U, Najjar M, Levy TE.  2008.  A new approach for geomagnetic archaeointensity research: insights on ancient metallurgy in the Southern Levant. Journal of Archaeological Science. 35:2863-2879.   10.1016/j.jas.2008.05.016   AbstractWebsite

We present results from an archaeointensity investigation based on a relatively unexploited recording medium, copper slag deposits. Together with a recently improved experimental design for the archaeointensity experiment, we demonstrate the applicability of this medium, as well as other archaeometallurgical artifacts, for the study of the ancient geomagnetic field intensity. In addition to archaeointensity data from well-dated archaeological contexts, we obtained reliable archaeointensity results from poorly dated or contentious archaeometallurgical sites in the Southern Levant. These results shed new light on the dating of these sites, among them the copper smelting installation of Timna 39b a site that has important implications for the beginning of metallurgy during the fifth millennium BCE. The paper also aims to introduce archaeointensity research to the archaeologist scholar, and to encourage further collaboration between the disciplines in future research. (C) 2008 Elsevier Ltd. All rights reserved.

2001
Cronin, M, Tauxe L, Constable C, Selkin P, Pick T.  2001.  Noise in the quiet zone. Earth and Planetary Science Letters. 190:13-30.   10.1016/s0012-821x(01)00354-5   AbstractWebsite

We have carried out a detailed paleomagnetic investigation of two stratigraphically overlapping sections from the Scaglia Bianca Formation (similar to 85-89.5 Ma) in the Umbria-Marche area in central Italy. Sampling was conducted over 32 in and 7 in intervals at La Roccaccia and Furlo respectively. After AF cleaning the majority of specimens show the expected normal magnetic field orientation, however a number of specimens are directionally anomalous. Some of these deviant specimens are accompanied by apparent spikes or dips in normalized intensity. A detailed investigation of rock magnetics shows that most of these deviations are not a sign of excursionary geomagnetic field behavior, but rather correspond to specimens with distinct rock magnetic characteristics and are therefore rock magnetic 'noise'. Such specimens should not be interpreted as records of the geomagnetic field. Our experience suggests that detailed rock magnetic and magnetic fabric analysis should be done on all anomalous directions prior to interpreting them as geomagnetic field behavior. After elimination of rock magnetic noise in the Scaglia Bianca data sets, there is a high degree of agreement in direction and to a lesser extent relative intensity between correlative portions of the two sections. We therefore offer this data set as a robust record of geomagnetic field behavior during the 4.5 Myr interval represented by the La Roccaccia section. A statistical analysis of the relative intensity observations suggests that this period of the Cretaceous Normal Superchron is characterized by a normalized variability in paleointensity (standard deviation about 28% of the mean value) that is significantly lower than seen during the Oligocene over intervals in which reversals or tiny wiggles occur (typically about 50%). The directional stability results in virtual geomagnetic pole dispersion compatible with that found in volcanic rocks from around the same latitude and ranging in age from 80 to 110 Ma. (C) 2001 Elsevier Science B.V. All rights reserved.

2000
Juarez, MT, Tauxe L.  2000.  The intensity of the time-averaged geomagnetic field: the last 5 Myr. Earth and Planetary Science Letters. 175:169-180.   10.1016/s0012-821x(99)00306-4   AbstractWebsite

The existing database for paleointensity estimates of the ancient geomagnetic field contains more than 1500 data points collected through decades of effort. Despite the huge amount of work put into obtaining these data, there remains a strong bias in the age and global distribution of the data reward very young results from a few locations. Also, few of the data meet strict criteria for reliability and most are of unknown quality. In order to improve the age and spatial distribution of the paleointensity database, we have carried out paleointensity experiments on submarine basaltic glasses from a number of DSDP sites. Of particular interest are the sites that provide paleointensity data spanning the time period 0.3-5 Ma, a time of relatively few high quality published data points. Our new data are concordant with contemporaneous data from the published literature that meet minimum acceptance criteria, and the combined data set yields an average dipole moment of 5.49 +/- 2.36 x 10(22) Am-2. This average value is comparable to the average paleofield for the period 5-160 Ma (4.2 +/- 2.3 x 10(22) Am-2) [T. Juarez, L. Tauxe, J.S. Gee and T. Pick (1998) Nature 394, 878-881] and is substantially less than the value of approximately 8 x 10(22) Am-2 often quoted for the last 5 Myr (e.g. [McFadden and McElhinny (1982) J. Geomagn. Geoelectr. 34, 163-189; A.T. Goguitchaichvili, M. Prevot and P. Camps (1999) Earth Planet. Sci. Lett. 167, 15-34]). (C) 2000 Elsevier Science B.V. All rights reserved.

1998
Johnson, CL, Wijbrans JR, Constable CG, Gee J, Staudigel H, Tauxe L, Forjaz VH, Salgueiro M.  1998.  Ar-40/Ar-39 ages and paleomagnetism of Sao Miguel lavas, Azores. Earth and Planetary Science Letters. 160:637-649.   10.1016/s0012-821x(98)00117-4   AbstractWebsite

We present new Ar-40/Ar-39 ages and paleomagnetic data for Sao Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. Ar-40/Ar-39 age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K-Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across Sao Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The Ar-40/Ar-39 ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0-0.1 Ma) and up to 0.78 Myr (0-0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78-0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction. (C) 1998 Elsevier Science B.V. All rights reserved.