Publications with links

Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T [U] V W X Y Z   [Show ALL]
U
Purkey, SG, Johnson GC, Talley LD, Sloyan BM, Wijffels SE, Smethie W, Mecking S, Katsumata K.  2019.  Unabated bottom water warming and freshening in the South Pacific Ocean. Journal of Geophysical Research-Oceans. 124:1778-1794.   10.1029/2018jc014775   AbstractWebsite

Abyssal ocean warming contributed substantially to anthropogenic ocean heat uptake and global sea level rise between 1990 and 2010. In the 2010s, several hydrographic sections crossing the South Pacific Ocean were occupied for a third or fourth time since the 1990s, allowing for an assessment of the decadal variability in the local abyssal ocean properties among the 1990s, 2000s, and 2010s. These observations from three decades reveal steady to accelerated bottom water warming since the 1990s. Strong abyssal (z>4,000m) warming of 3.5 (1.4) m degrees C/year (m degrees C=10(-3)degrees C) is observed in the Ross Sea, directly downstream from bottom water formation sites, with warming rates of 2.5 (0.4) m degrees C/year to the east in the Amundsen-Bellingshausen Basin and 1.3 (0.2) m degrees C/year to the north in the Southwest Pacific Basin, all associated with a bottom-intensified descent of the deepest isotherms. Warming is consistently found across all sections and their occupations within each basin, demonstrating that the abyssal warming is monotonic, basin-wide, and multidecadal. In addition, bottom water freshening was strongest in the Ross Sea, with smaller amplitude in the Amundsen-Bellingshausen Basin in the 2000s, but is discernible in portions of the Southwest Pacific Basin by the 2010s. These results indicate that bottom water freshening, stemming from strong freshening of Ross Shelf Waters, is being advected along deep isopycnals and mixed into deep basins, albeit on longer timescales than the dynamically driven, wave-propagated warming signal. We quantify the contribution of the warming to local sea level and heat budgets. Plain Language Summary Over 90% of the excess energy gained by Earth's climate system has been absorbed by the oceans, with about 10% found deeper than 2,000m. The rates and patterns of deep and abyssal (deeper than 4,000m) ocean warming, while vital for understanding how this heat sink might behave in the future, are poorly known owing to limited data. Here we use highly accurate data collected by ships along oceanic transects with decadal revisits to quantify how much heat and freshwater has entered the South Pacific Ocean between the 1990s and 2010s. We find widespread warming throughout the deep basins there and evidence that the warming rate has accelerated in the 2010s relative to the 1990s. The warming is strongest near Antarctica where the abyssal ocean is ventilated by surface waters that sink to the sea floor and hence become bottom water, but abyssal warming is observed everywhere. In addition, we observe an infusion of freshwater propagating along the pathway of the bottom water as it moves northward from Antarctica. We quantify the deep ocean warming contributions to heat uptake as well as sea level rise through thermal expansion.

National Research Council(U.S.). Panel on Climate Change Feedbacks., National Research Council(U.S.). Board on Atmospheric Sciences and Climate..  2003.  Understanding climate change feedbacks. :xiv,152p.ill.23cm.., Washington, D.C.: National Academies Press, Abstract
n/a
Hernandez-Guerra, A, Talley LD, Pelegri JL, Velez-Belchi P, Baringer MO, Macdonald AM, McDonagh EL.  2019.  The upper, deep, abyssal and overturning circulation in the Atlantic Ocean at 30 degrees S in 2003 and 2011. Progress in Oceanography. 176   10.1016/j.pocean.2019.102136   AbstractWebsite

Mass transports for the thermocline, intermediate, deep and abyssal layers in the Atlantic Ocean, at 30 degrees S and for 2003 and 2011, have been estimated using data from GO-SHIP hydrographic transoceanic sections and applying three inverse models with different constraints. The uppermost layers comprise South Atlantic Central Water (SACW) and Antarctic Intermediate Water (AAIW), with a net northward transport in the range of 12.1-14.7 Sv in 2003 and 11.7-17.7 Sv in 2011, which can be considered as the northward returning limb of the Meridional Overturning Circulation (MOC). The western boundary Brazil Current transports twice as much SACW in 2003 (-20.2 +/- 0.7 Sv) than in 2011 (-9.7 +/- 0.7 Sv). A poleward current consisting of AAIW and Upper Circumpolar Deep Water (UCDW) flows beneath the Brazil Current. The eastern boundary Benguela Current, characterized by a high mesoscale eddy activity, transports 15.6 +/- 0.9 Sv in 2003 and 11.2 +/- 0.8 Sv in 2011, east of the Walvis Ridge. In the ocean interior, the northward flow is mainly located east of the Mid Atlantic Ridge (MAR) where Agulhas Rings (ARs), observed in both 2003 and 2011, transport warm and salty water from the Indian to the Atlantic Ocean. For the deep layers, the southward transport of North Atlantic Deep Water (NADW) occurs as the Deep Western Boundary Current and also in the eastern basin. The western and eastern basins transport similar amounts of NADW to the south during both years, although the eastern pathway changes substantially between both years. The total NADW transport, which is also considered the MOC, is in the range 16.3-24.5 Sv in 2003 and 17.1-29.6 Sv in 2011, hence with no significant change.