Publications with links

Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
Bindoff, NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quere C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A.  2007.  Observations: Oceanic Climate Change and Sea Level. Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. ( Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller H, Eds.).:387-432., Cambridge ; New York: Cambridge University Press Abstract
Chamberlain, P, Talley LD, Mazloff M, Riser S, Speer K, Gray AR, Schwartzman A.  2018.  Observing the ice-covered Weddell Gyre with profiling floats: position uncertainties and correlation statistics. Journal of Geophysical Research: Oceans.   10.1029/2017JC012990   Abstract

Argo-type profiling floats do not receive satellite positioning while under sea ice. Common practice is to approximate unknown positions by linearly interpolating latitude-longitude between known positions before and after ice cover, although it has been suggested that some improvement may be obtained by interpolating along contours of planetary-geostrophic potential vorticity. Profiles with linearly interpolated positions represent 16% of the Southern Ocean Argo dataset; consequences arising from this approximation have not been quantified. Using three distinct datasets from the Weddell Gyre - 10 day satellite-tracked Argo floats, daily-tracked RAFOS-enabled floats, and a particle release simulation in the Southern Ocean State Estimate (SOSE) - we perform a data withholding experiment to assess position uncertainty in latitude-longitude and potential vorticity coordinates as a function of time since last fix. A spatial correlation analysis using the float data provides temperature and salinity uncertainty estimates as a function of distance error. Combining the spatial correlation scales and the position uncertainty, we estimate uncertainty in temperature and salinity as a function of duration of position loss. Maximum position uncertainty for interpolation during 8 months without position data is 116 ± 148 km for latitude-longitude and 92 ± 121 km for potential vorticity coordinates. The estimated maximum uncertainty in local temperature and salinity over the entire 2,000 m profiles during 8 months without position data is 0.66 ° C and 0.15 psu in the upper 300 m and 0.16 ° C and 0.01 psu below 300 m.

Talley, LD, Fryer G, Lumpkin R.  2013.  Oceanography. The Pacific Islands: Environment and Society. ( Rapaport M, Ed.)., Honolulu: University of Hawai'i Press
Talley, LD.  1991.  An Okhotsk Sea-Water Anomaly - Implications for Ventilation in the North Pacific. Deep-Sea Research Part a-Oceanographic Research Papers. 38:S171-S190.   10.1016/S0198-0149(12)80009-4   AbstractWebsite

An unusually cold, fresh and oxygenated layer of water centered at a pressure of 800 dbar and sigma-theta of 27.4 was found at a CTD station in the western Pacific at 43-degrees-5'N, 153-degrees-20'E in August 1985. The anomaly was part of a larger pattern of less dramatic but nevertheless higher variance at densities up to 27.6-sigma-theta in the mixed water region of the Oyashio and Kuroshio, south of the Bussol' Strait, which connects the Sea of Okhotsk and the open North Pacific. Isopycnal maps indicate that the source of the anomaly, which was embedded in a cyclonic flow, was the Okhotsk Sea. Surface properties in the Okhotsk Sea, based on all available NODC observations, and isopycnal maps indicate that the layer probably did not originate at the sea surface in open water. Instead, the principal modifying influences at densities of 26.8-27.6-sigma-theta in the North Pacific are sea-ice formation and vertical mixing, the latter primarily in the Kuril Straits. A simple calculation shows that most of the low salinity influence at these densities in the North Pacific can originate in the Okhotsk Sea and that vertical mixing in the open North Pacific may be much less important than previously thought.

Llanillo, PJ, Pelegri JL, Talley LD, Pena-Izquierdo J, Cordero RR.  2018.  Oxygen pathways and budget for the Eastern South Pacific Oxygen Minimum Zone. Journal of Geophysical Research-Oceans. 123:1722-1744.   10.1002/2017jc013509   AbstractWebsite

Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.8 +/- 0.42 mu mol kg(-1) yr(-1)) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).