Publications with links

Export 12 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Alley, RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM.  2003.  Abrupt climate change. Science. 299:2005-2010.   10.1126/science.1081056   AbstractWebsite

Large, abrupt, and widespread climate changes with major impacts have occurred repeatedly in the past, when the Earth system was forced across thresholds. Although abrupt climate changes can occur for many reasons, it is conceivable that human forcing of climate change is increasing the probability of large, abrupt events. Were such an event to recur, the economic and ecological impacts could be large and potentially serious. Unpredictability exhibited near climate thresholds in simple models shows that some uncertainty will always be associated with projections. In light of these uncertainties, policy-makers should consider expanding research into abrupt climate change, improving monitoring systems, and taking actions designed to enhance the adaptability and resilience of ecosystems and economies.

on Change, NRCCAC(US).  2002.  Abrupt climate change : inevitable surprises. :xii,230p.., Washington, D.C.: National Academy Press Abstract
Gordon, AL, Ma SB, Olson DB, Hacker P, Ffield A, Talley LD, Wilson D, Baringer M.  1997.  Advection and diffusion of Indonesian throughflow water within the Indian Ocean South Equatorial Current. Geophysical Research Letters. 24:2573-2576.   10.1029/97gl01061   AbstractWebsite

Warm, low salinity Pacific water weaves through the Indonesian Seas into the eastern boundary of the Indian Ocean. The Indonesian Throughflow Water (ITW) adds freshwater into the Indian Ocean as it spreads by the advection and diffusion within the Indian Ocean's South Equatorial Current (SEC). The low salinity throughflow trace, centered along 12 degrees S, stretches across the Indian Ocean, separating the monsoon dominated regime of the northern Indian Ocean from the more typical subtropical stratification to the south. ITW is well represented within the SEC thermocline, extending with concentrations above 80% of initial characteristics from the sea surface to 300-m within the eastern half of the Indian Ocean, with 60% concentration reaching well into the western Indian Ocean. The ITW transport within the SEC varies from 4 to 12 x 10(6) m(3)sec(-1), partly in response to variations of the injection rate at the eastern boundary and to the likelihood of a zonally elongated recirculation cell between the Equatorial Counter Current and the SEC within the Indian Ocean. Lateral mixing disperses the ITW plume meridionally with an effective isopycnal mixing coefficient of 1.1 to 1.6 x 10(4) m(2)sec(-1).

Billheimer, S, Talley LD.  2016.  Annual cycle and destruction of Eighteen Degree Water. Journal of Geophysical Research-Oceans. 121:6604-6617.   10.1002/2016jc011799   AbstractWebsite

Eighteen Degree Water (EDW), the subtropical mode water of the western North Atlantic, is a voluminous, weakly stratified upper ocean water mass that acts as a subsurface reservoir of heat, nutrients, and CO2. This thick layer persists throughout the year, but nearly half of its volume is dispersed or mixed away, diffusing its properties into the thermocline, from the time it outcrops in winter until it is renewed the following year. CTD observations from Argo profiling floats and acoustically tracked, isothermally bound profiling floats are used to quantify EDW destruction rates and investigate the relevant processes responsible for the large annual cycle of EDW. EDW destruction occurs primarily at the top of the EDW layer, with the highest EDW destruction rates occurring during early summer. Slower, steadier EDW destruction is observed in early winter. EDW destruction is dominated by 1-D vertical diffusion, while mesoscale, along-isopycnal stirring is also significant, explaining approximately 1/3 of the total annual EDW destruction. Destruction via along-isopycnal processes is more prevalent near the Gulf Stream than in the southern Sargasso Sea, due to higher potential vorticity gradients and enhanced mesoscale activity.

Johnson, KS, Plant JN, Dunne JP, Talley LD, Sarmiento JL.  2017.  Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production. Journal of Geophysical Research-Oceans. 122:6668-6683.   10.1002/2017jc012839   AbstractWebsite

Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. Vertically resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on profiling floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate profile from the month with the highest winter nitrate minus the mean profile from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout the Southern Ocean south of 30 degrees S. A well-defined, zonal mean distribution is found with highest values (3-4 mol C m(-2) yr(-1)) from 40 to 50 degrees S. Lowest values are found in the subtropics and in the seasonal ice zone. The area weighted mean was 2.9 mol C m(-2) yr(-1) for all regions south of 40 degrees S. Cumulative ANCP south of 50 degrees S is 1.3 Pg C yr(-1). This represents about 13% of global ANCP in about 14% of the global ocean area. Plain Language Summary This manuscript reports on 40 annual cycles of nitrate observed by chemical sensors on SOCCOM profiling floats. The annual drawdown in nitrate concentration by phytoplankton is used to assess the spatial variability of annual net community production in the Southern Ocean. This ANCP is a key component of the global carbon cycle and it exerts an important control on atmospheric carbon dioxide. We show that the results are consistent with our prior understanding of Southern Ocean ANCP, which has required decades of observations to accumulate. The profiling floats now enable annual resolution of this key process. The results also highlight spatial variability in ANCP in the Southern Ocean.

Delman, AS, Sprintall J, McClean JL, Talley LD.  2016.  Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events. Journal of Geophysical Research: Oceans.   10.1002/2016JC011635   AbstractWebsite

Anomalous sea surface temperature (SST) cooling south of Java, initiated during May–July, is an important precursor to positive Indian Ocean Dipole (pIOD) events. As shown previously, the Java SST anomalies are spatially and temporally coincident with seasonal upwelling induced locally by southeasterly trade winds. However, we confirm earlier findings that interannual variability of the Java cooling is primarily driven by remote wind forcing from coastal Sumatra and the equatorial Indian Ocean (EqIO); we also find an influence from winds along the Indonesian Throughflow. The wind forcing in the EqIO and along coastal Sumatra does not initiate SST cooling locally due to a deep thermocline and thick barrier layer, but can force upwelling Kelvin waves that induce substantial surface cooling once they reach the seasonally shallower thermocline near the coast of Java. Satellite altimetry is used to obtain a Kelvin wave coefficient that approximates Kelvin wave amplitude variations along the equator. All pIOD years in the satellite record have anomalous levels of upwelling Kelvin wave activity along the equator during April–June, suggesting that upwelling waves during this season are necessary for pIOD event development. However, a change to wind-forced downwelling Kelvin waves during July–August can abruptly terminate cool Java SST anomalies and weaken the pIOD event. Upwelling Kelvin wave activity along the equator and wind stress anomalies west of Sumatra are both robust predictors of the IOD index later in the calendar year, while values of the Kelvin wave coefficient are the most reliable predictor of pIOD events specifically.

Sloyan, BM, Talley LD, Chereskin TK, Fine R, Holte J.  2010.  Antarctic Intermediate Water and Subantarctic Mode Water Formation in the Southeast Pacific: The Role of Turbulent Mixing. Journal of Physical Oceanography. 40:1558-1574.   10.1175/2010jpo4114.1   AbstractWebsite

During the 2005 austral winter (late August-early October) and 2006 austral summer (February-mid-March) two intensive hydrographic surveys of the southeast Pacific sector of the Southern Ocean were completed. In this study the turbulent kinetic energy dissipation rate epsilon, diapycnal diffusivity kappa, and buoyancy flux J(b) are estimated from the CTD/O(2) and XCTD profiles for each survey. Enhanced kappa of O(10(-3) to 10(-4) m(2) s(-1)) is found near the Subantarctic Front (SAF) during both surveys. During the winter survey, enhanced kappa was also observed north of the "subduction front,'' the northern boundary of the winter deep mixed layer north of the SAF. In contrast, the summer survey found enhanced kappa across the entire region north of the SAF below the shallow seasonal mixed layer. The enhanced kappa below the mixed layer decays rapidly with depth. A number of ocean processes are considered that may provide the energy flux necessary to support the observed diffusivity. The observed buoyancy flux (4.0 x 10(-8) m(2) s(-3)) surrounding the SAF during the summer survey is comparable to the mean buoyancy flux (0.57 x 10(-8) m(2) s(-3)) associated with the change in the interior stratification between austral summer and autumn, determined from Argo profiles. The authors suggest that reduced ocean stratification during austral summer and autumn, by interior mixing, preconditions the water column for the rapid development of deep mixed layers and efficient Antarctic Intermediate Water and Subantarctic Mode Water formation during austral winter and early spring.

Suga, T, Talley LD.  1995.  Antarctic Intermediate Water Circulation in the Tropical and Subtropical South-Atlantic. Journal of Geophysical Research-Oceans. 100:13441-13453.   10.1029/95jc00858   AbstractWebsite

Recent hydrographic data from the South Atlantic Ventilation Experiment cruises and others are combined with historical data and used to map the isopycnal properties corresponding to the Antarctic Intermediate Water (AAIW) in the Atlantic Ocean. The low salinity of the AAIW extends eastward across the South Atlantic just south of the equator (3-4 degrees S). Evidence of a weak eastward flow just north of the equator (1-2 degrees N) is also shown. Lateral and vertical homogenization of properties in the AAIW is found at the equator between 2 degrees S and 2 degrees N; there is no clear zonal gradient in salinity just along the equator. These observations suggest enhanced mixing within the equatorial baroclinic deformation radius. The South Atlantic tropical gyre is shown to consist of the following three cells: one cyclonic cell centered at about 7 degrees S, another centered at about 19 degrees S in the west and 23 degrees S in the east, and one anticyclonic cell centered at about 13 degrees S. These cells are associated with a westward extension at 10 degrees S of high salinity and low oxygen which originates in the eastern tropical South Atlantic and a front in these properties at about 15 degrees S in the west and about 20 degrees S in the east.

Talley, LD.  1996.  Antarctic Intermediate Water in the South Atlantic. The South Atlantic : present and past circulation. ( Wefer G, Berger WH, Siedler G, Webb D, Eds.).:219-238., Berlin ; New York: Springer Abstract
Holte, J, Talley LD, Gilson J, Roemmich D.  2017.  An Argo mixed layer climatology and database. Geophysical Research Letters. 44:5618-5626.   10.1002/2017gl073426   AbstractWebsite

A global climatology and database of mixed layer properties are computed from nearly 1,250,000 Argo profiles. The climatology is calculated with both a hybrid algorithm for detecting the mixed layer depth (MLD) and a standard threshold method. The climatology provides accurate information about the depth, properties, extent, and seasonal patterns of global mixed layers. The individual profile results in the database can be used to construct time series of mixed layer properties in specific regions of interest. The climatology and database are available online at . The MLDs calculated by the hybrid algorithm are shallower and generally more accurate than those of the threshold method, particularly in regions of deep winter mixed layers; the new climatology differs the most from existing mixed layer climatologies in these regions. Examples are presented from the Labrador and Irminger Seas, the Southern Ocean, and the North Atlantic Ocean near the Gulf Stream. In these regions the threshold method tends to overestimate winter MLDs by approximately 10% compared to the algorithm.

Talley, LD, Tishchenko P, Luchin V, Nedashkovskiy A, Sagalaev S, Kang DJ, Warner M, Min DH.  2004.  Atlas of Japan (East) Sea hydrographic properties in summer, 1999. Progress in Oceanography. 61:277-348.   10.1016/j.pocean.2004.06.011   AbstractWebsite

Hydrographic properties from CTD and discrete bottle sample profiles covering the Japan (East) Sea in summer, 1999, are presented in vertical sections, maps at standard depths, maps on isopycnal surfaces, and as property-property distributions. This data set covers most of the Sea with the exception of the western boundary region and northern Tatar Strait, and includes nutrients, pH, alkalinity, and chlorofluorocarbons, as well as the usual temperature, salinity, and oxygen observations. (C) 2004 Elsevier Ltd. All rights reserved.

Gray, AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL, Talley LD, Wanninkhof R, Williams NL, Sarmiento JL.  2018.  Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophysical Research Letters. 45:9049-9057.   10.1029/2018gl078013   AbstractWebsite

Although the Southern Ocean is thought to account for a significant portion of the contemporary oceanic uptake of carbon dioxide (CO2), flux estimates in this region are based on sparse observations that are strongly biased toward summer. Here we present new estimates of Southern Ocean air-sea CO2 fluxes calculated with measurements from biogeochemical profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling project during 2014-2017. Compared to ship-based CO2 flux estimates, the float-based fluxes find significantly stronger outgassing in the zone around Antarctica where carbon-rich deep waters upwell to the surface ocean. Although interannual variability contributes, this difference principally stems from the lack of autumn and winter ship-based observations in this high-latitude region. These results suggest that our current understanding of the distribution of oceanic CO2 sources and sinks may need revision and underscore the need for sustained year-round biogeochemical observations in the Southern Ocean. Plain Language Summary The Southern Ocean absorbs a great deal of carbon dioxide from the atmosphere and helps to shape the climate of Earth. However, we do not have many observations from this part of the world, especially in winter, because it is remote and inhospitable. Here we present new observations from robotic drifting buoys that take measurements of temperature, salinity, and other water properties year-round. We use these data to estimate the amount of carbon dioxide being absorbed by the Southern Ocean. In the open water region close to Antarctica, the new estimates are remarkably different from the previous estimates, which were based on data collected from ships. We discuss some possible reasons that the float-based estimate is different and how this changes our understanding of how the ocean absorbs carbon dioxide.