Publications with links

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
Talley, LD.  2008.  Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Progress in Oceanography. 78:257-303.   10.1016/j.pocean.2008.05.001   AbstractWebsite

Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions: 1. Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 +/- 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 +/- 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 +/- 0.02 Sv of freshwater equatorward. In complete contrast, almost all of the 0.61 +/- 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0. 1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 +/- 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (-0.06 +/- 0.04 Sv). This northern-southern hemisphere asymmetry is likely a consequence of the "Drake Passage" effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research 1 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters. 2. The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32 degrees S, freshwater import (0.28 +/- 0.04 Sv) comes from the Pacific through Bering Strait (0.06 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 +/- 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 0.02 Sv): from saline Benguela Current surface water (-0.05 +/- 0.01 Sv), fresh AAIW (0.06 0.01 Sv) and fresh AABW/LCDW (0.01 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget. For the Indian Ocean north of 32 degrees S, import of the required 0.37 +/- 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 +/- 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 +/- 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (-0.04 +/- 0.03 Sv). The Pacific north of 28 degrees S is essentially neutral with respect to freshwater, -0.04 +/- 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (-0.07 +/- 0.02 Sv), export to the Indian through the Indonesian Throughflow (-0.17 +/- 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (-0.03 +/- 0.03 Sv), and import of 0.23 +/- 0.04 Sv from the Southern Ocean via the shallow gyre circulation. 3. Bering Strait's small freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity. (C) 2008 Elsevier Ltd. All rights reserved.

2006
Fiedler, PC, Talley LD.  2006.  Hydrography of the eastern tropical Pacific: A review. Progress in Oceanography. 69:143-180.   10.1016/j.pocean.2006.03.008   AbstractWebsite

Eastern tropical Pacific Ocean waters lie at the eastern end of a basin-wide equatorial current system, between two large subtropical gyres and at the terminus of two eastern boundary currents. Descriptions and interpretations of surface, pycnocline, intermediate and deep waters in the region are reviewed. Spatial and temporal patterns are discussed using (1) maps of surface temperature, salinity, and nutrients (phosphate, silicate, nitrate and nitrite), and thermocline and mixed layer parameters, and (2) meridional and zonal sections of temperature, salinity, potential density, oxygen, and nutrients. These patterns were derived from World Ocean Database observations by an ocean interpolation algorithm: loess-weighted observations were projected onto quadratic functions of spatial coordinates while simultaneously fitting annual and semiannual harmonics and the Southern Oscillation Index to account for interannual variability. Contrasts between the equatorial cold tongue and the eastern Pacific warm pool are evident in all the hydrographic parameters. Annual cycles and ENSO (El Nino-Southern Oscillation) variability are of similar amplitude in the eastern tropical Pacific, however, there are important regional differences in relative variability at these time scales. Unique characteristics of the eastern tropical Pacific are discussed: the strong and shallow pycnocline, the pronounced oxygen minimum layer, and the Costa Rica Dome. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific. (c) 2006 Elsevier Ltd. All rights reserved.

2004
Talley, LD, Tishchenko P, Luchin V, Nedashkovskiy A, Sagalaev S, Kang DJ, Warner M, Min DH.  2004.  Atlas of Japan (East) Sea hydrographic properties in summer, 1999. Progress in Oceanography. 61:277-348.   10.1016/j.pocean.2004.06.011   AbstractWebsite

Hydrographic properties from CTD and discrete bottle sample profiles covering the Japan (East) Sea in summer, 1999, are presented in vertical sections, maps at standard depths, maps on isopycnal surfaces, and as property-property distributions. This data set covers most of the Sea with the exception of the western boundary region and northern Tatar Strait, and includes nutrients, pH, alkalinity, and chlorofluorocarbons, as well as the usual temperature, salinity, and oxygen observations. (C) 2004 Elsevier Ltd. All rights reserved.