Publications with links

Export 10 results:
Sort by: Author Title Type [ Year  (Desc)]
Russell, JL, Kamenkovich I, Bitz C, Ferrari R, Gille ST, Goodman PJ, Hallberg R, Johnson K, Khazmutdinova K, Marinov I, Mazloff M, Riser S, Sarmiento JL, Speer K, Talley LD, Wanninkhof R.  2018.  Metrics for the evaluation of the Southern Ocean in coupled climate models and earth system models. Journal of Geophysical Research-Oceans. 123:3120-3143.   10.1002/2017jc013461   AbstractWebsite

The Southern Ocean is central to the global climate and the global carbon cycle, and to the climate's response to increasing levels of atmospheric greenhouse gases, as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic trend. Due to the region's complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes, and topography. Observationally based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate and earth system models. New observations and understanding have allowed for progress in the creation of observationally based data/model metrics for the Southern Ocean. Metrics presented here provide a means to assess multiple simulations relative to the best available observations and observational products. Climate models that perform better according to these metrics also better simulate the uptake of heat and carbon by the Southern Ocean. This report is not strictly an intercomparison, but rather a distillation of key metrics that can reliably quantify the "accuracy" of a simulation against observed, or at least observable, quantities. One overall goal is to recommend standardization of observationally based benchmarks that the modeling community should aspire to meet in order to reduce uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake. Plain Language Summary Observationally based metrics are essential for the standardized evaluation of climate and earth system models, and for reducing the uncertainty associated with future projections by those models.

Johnson, KS, Plant JN, Dunne JP, Talley LD, Sarmiento JL.  2017.  Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production. Journal of Geophysical Research-Oceans. 122:6668-6683.   10.1002/2017jc012839   AbstractWebsite

Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. Vertically resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on profiling floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate profile from the month with the highest winter nitrate minus the mean profile from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout the Southern Ocean south of 30 degrees S. A well-defined, zonal mean distribution is found with highest values (3-4 mol C m(-2) yr(-1)) from 40 to 50 degrees S. Lowest values are found in the subtropics and in the seasonal ice zone. The area weighted mean was 2.9 mol C m(-2) yr(-1) for all regions south of 40 degrees S. Cumulative ANCP south of 50 degrees S is 1.3 Pg C yr(-1). This represents about 13% of global ANCP in about 14% of the global ocean area. Plain Language Summary This manuscript reports on 40 annual cycles of nitrate observed by chemical sensors on SOCCOM profiling floats. The annual drawdown in nitrate concentration by phytoplankton is used to assess the spatial variability of annual net community production in the Southern Ocean. This ANCP is a key component of the global carbon cycle and it exerts an important control on atmospheric carbon dioxide. We show that the results are consistent with our prior understanding of Southern Ocean ANCP, which has required decades of observations to accumulate. The profiling floats now enable annual resolution of this key process. The results also highlight spatial variability in ANCP in the Southern Ocean.

Johnson, KS, Plant JN, Coletti LJ, Jannasch HW, Sakamoto CM, Riser SC, Swift DD, Williams NL, Boss E, Haentjens N, Talley LD, Sarmiento JL.  2017.  Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research-Oceans. 122:6416-6436.   10.1002/2017jc012838   AbstractWebsite

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 +/- 1%, nitrate to within 0.5 +/- 0.5 mu mol kg(-1), and pH to 0.005 +/- 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m(-3) or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.

Centurioni, LR, Hormann V, Talley LD, Arzeno I, Beal L, Caruso M, Conry P, Echols R, Fernando HJS, Giddings SN, Gordon A, Graber H, Harcourt RR, Jayne SR, Jensen TG, Lee CM, Lermusiaux PFJ, L'Hegaret P, Lucas AJ, Mahadevan A, McClean JL, Pawlak G, Rainville L, Riser SC, Seo H, Shcherbina AY, Skyllingstad E, Sprintall J, Subrahmanyam B, Terrill E, Todd RE, Trott C, Ulloa HN, Wang H.  2017.  Northern Arabian Sea Circulation Autonomous Research (NASCar): A research initiative based on autonomous sensors. Oceanography. 30:74-87.   10.5670/oceanog.2017.224   AbstractWebsite

The Arabian Sea circulation is forced by strong monsoonal winds and is characterized by vigorous seasonally reversing currents, extreme differences in sea surface salinity, localized substantial upwelling, and widespread submesoscale thermohaline structures. Its complicated sea surface temperature patterns are important for the onset and evolution of the Asian monsoon. This article describes a program that aims to elucidate the role of upper-ocean processes and atmospheric feedbacks in setting the sea surface temperature properties of the region. The wide range of spatial and temporal scales and the difficulty of accessing much of the region with ships due to piracy motivated a novel approach based on state-of-the-art autonomous ocean sensors and platforms. The extensive data set that is being collected, combined with numerical models and remote sensing data, confirms the role of planetary waves in the reversal of the Somali Current system. These data also document the fast response of the upper equatorial ocean to monsoon winds through changes in temperature and salinity and the connectivity of the surface currents across the northern Indian Ocean. New observations of thermohaline interleaving structures and mixing in setting the surface temperature properties of the northern Arabian Sea are also discussed.

Carter, BR, Talley LD, Dickson AG.  2014.  Mixing and remineralization in waters detrained from the surface into Subantarctic Mode Water and Antarctic Intermediate Water in the southeastern Pacific. Journal of Geophysical Research-Oceans. 119:4001-4028.   10.1002/2013jc009355   AbstractWebsite

A hydrographic data set collected in the region and season of Subantarctic Mode Water and Antarctic Intermediate Water (SAMW and AAIW) formation in the southeastern Pacific allows us to estimate the preformed properties of surface water detrained into these water masses from deep mixed layers north of the Subantarctic Front and Antarctic Surface Water south of the front. Using 10 measured seawater properties, we estimate: the fractions of SAMW/AAIW that originate as surface source waters, as well as fractions that mix into these water masses from subtropical thermocline water above and Upper Circumpolar Deep Water below the subducted SAMW/AAIW; ages associated with the detrained surface water; and remineralization and dissolution rates and ratios. The mixing patterns imply that cabbeling can account for similar to 0.005-0.03 kg m(-3) of additional density in AAIW, and similar to 0-0.02 kg m(-3) in SAMW. We estimate a shallow depth (similar to 300-700 m, above the aragonite saturation horizon) calcium carbonate dissolution rate of 0.4 +/- 0.2 mmol CaCO3 kg(-1) yr(-1), a phosphate remineralization rate of 0.031 +/- 0.009 mu mol P kg(-1) yr(-1), and remineralization ratios of P:N:-O-2:C-org of 1:(15.5 +/- 0.6):(143 +/- 10):(104 +/- 22) for SAMW/AAIW. Our shallow depth calcium carbonate dissolution rate is comparable to previous estimates for our region. Our -O-2:P ratio is smaller than many global averages. Our model suggests neglecting diapycnal mixing of preformed phosphate has likely biased previous estimates of -O-2:P and C-org:P high, but that the C-org:P ratio bias may have been counteracted by a second bias in previous studies from neglecting anthropogenic carbon gradients.

Bourassa, MA, Gille ST, Bitz C, Carlson D, Cerovecki I, Clayson CA, Cronin MF, Drennan WM, Fairall CW, Hoffman RN, Magnusdottir G, Pinker RT, Renfrew IA, Serreze M, Speer K, Talley LD, Wick GA.  2013.  High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bulletin of the American Meteorological Society. 94:403-423.   10.1175/bams-d-11-00244.1   AbstractWebsite

Polar regions have great sensitivity to climate forcing; however, understanding of the physical processes coupling the atmosphere and ocean in these regions is relatively poor. Improving our knowledge of high-latitute surface fluxes will require close collaboration among meteorologists, oceanographers, ice physicists, and climatologists, and between observationalists and modelers, as well as new combinations of in situ measurements and satellite remote sensing. This article describes the deficiencies in our current state of knowledge about air-sea surface fluxes in high latitutes, the sensitivity of various high-latitude processes to changes in surface fluxes, and the scientific requirements for surface fluxes at high latitutdes. We inventory the reasons, both logistical and physical, why existing flux products do not meet these requirements. Capturing an annual cycle in fluxes requires that instruments function through long periods of cold polar darkness, often far from support services, in situations subject to icing and extreme wave conditions. Furthermore, frequent cloud cover at high latitudes restricts the avilability of surface and atmospheric data from visible and infrared (IR) wavelength satellite sensors. Recommendations are made for improving high-latitude fluxes, including 1) acquiring more in situ observations, 2) developing improved satellite-flux-observing capabilities, 3) making observations and flux products more accessible, and 4) encouraging flux intercomparisons.

Macdonald, AM, Mecking S, Robbins PE, Toole JM, Johnson GC, Talley L, Cook M, Wijffels SE.  2009.  The WOCE-era 3-D Pacific Ocean circulation and heat budget. Progress in Oceanography. 82:281-325.   10.1016/j.pocean.2009.08.002   AbstractWebsite

To address questions concerning the intensity and spatial structure of the three-dimensional circulation within the Pacific Ocean and the associated advective and diffusive property flux divergences, data from approximately 3000 high-quality hydrographic stations collected on 40 zonal and meridional cruises have been merged into a physically consistent model. The majority of the stations were occupied as part of the World Ocean Circulation Experiment (WOCE), which took place in the 1990s. These data are supplemented by a few pre-WOCE surveys of similar quality, and time-averaged direct-velocity and historical hydrographic measurements about the equator. An inverse box model formalism is employed to estimate the absolute along-isopycnal velocity field, the magnitude and spatial distribution of the associated diapycnal flow and the corresponding diapycnal advective and diffusive property flux divergences. The resulting large-scale WOCE Pacific circulation can be described as two shallow overturning cells at mid- to low latitudes, one in each hemisphere, and a single deep cell which brings abyssal waters from the Southern Ocean into the Pacific where they upwell across isopycnals and are returned south as deep waters. Upwelling is seen to occur throughout most of the basin with generally larger dianeutral transport and greater mixing occurring at depth. The derived pattern of ocean heat transport divergence is compared to published results based on air-sea flux estimates. The synthesis suggests a strongly east/west oriented pattern of air-sea heat flux with heat loss to the atmosphere throughout most of the western basins, and a gain of heat throughout the tropics extending poleward through the eastern basins. The calculated meridional heat transport agrees well with previous hydrographic estimates. Consistent with many of the climatologies at a variety of latitudes as well, our meridional heat transport estimates tend toward lower values in both hemispheres. (C) 2009 Elsevier Ltd. All rights reserved.

Brambilla, E, Talley LD.  2008.  Subpolar Mode Water in the northeastern Atlantic: 1. Averaged properties and mean circulation. Journal of Geophysical Research-Oceans. 113   10.1029/2006jc004062   AbstractWebsite

Subpolar Mode Waters (SPMW) in the eastern North Atlantic subpolar gyre are investigated with hydrographic and Lagrangian data (surface drifters and isopycnal floats). Historical hydrographic data show that SPMWs are surface water masses with nearly uniform properties, confined between the ocean surface and the permanent pycnocline. SPMWs represented by densities 27.3(sigma theta), 27.4(sigma theta), and 27.5(sigma theta) are present in the eastern subpolar gyre and are influenced by the topography and the regional circulation. Construction of an absolute surface stream function from surface drifters shows that SPMWs are found along the mean path of each of the several branches of the North Atlantic Current (NAC) and their density increases gradually downstream. The Rockall Trough branch of the NAC carries 27.3(sigma theta), 27.4(sigma theta), and 27.5(sigma theta) SPMW toward the Iceland-Faroe Front. In the Iceland Basin, the Subarctic Front along the western flank of the Rockall Plateau carries a similar sequence of SPMW. The western side of the Central Iceland Basin branch of the NAC, on the other hand, veers westward and joins the East Reykjanes Ridge Current, feeding the 27.5(sigma theta) SPMW on the Reykjanes Ridge. The separation among the various NAC branches most likely explains the different properties that characterize the 27.5(sigma theta) SPMW found on the Reykjanes Ridge and on the Iceland-Faroe Ridge. Since the branches of the NAC have a dominant northeastward direction, the newly observed distribution of SPMW combined with the new stream function calculation modify the original hypothesis of McCartney and Talley (1982) of a smooth cyclonic pathway for SPMW advection and density increase around the subpolar gyre.

Brambilla, E, Talley LD.  2006.  Surface drifter exchange between the North Atlantic subtropical and subpolar gyres. Journal of Geophysical Research-Oceans. 111   10.1029/2005jc003146   AbstractWebsite

[ 1] Surface drifters deployed in the subtropical and subpolar North Atlantic from 1990 to 2002 show almost no connection between the subtropical and subpolar gyres; only one drifter crosses the intergyre boundary even though other data types ( e. g., dynamic topography and tracers) suggest a major connection. Two of several possible causes for the lack of intergyre connectivity in this two-dimensional data set are examined: ( 1) undersampling and short drifter lifetime leading to underestimation of the northward flow, and ( 2) the southward mean Ekman velocity. Advection of a large number of long-lived synthetic drifters through the observed mean velocity results in a 5% increase in cross-gyre flux compared with that for synthetic drifters with realistic lifetimes. By further advecting synthetic drifters through the observed mean velocity field with and without the Ekman component, estimated from the wind field associated with the actual drifters, it is shown that removal of the Ekman component further increases the intergyre flux by up to 6%. With a turbulent component added to the mean velocity field to simulate the eddy field, there is a further increase in connection by 5%. Thus the Ekman and eddy contributions to the drifter trajectories nearly cancel each other. Consideration of three-dimensional processes ( subduction and obduction) is reserved for complete modeling studies.

McCarthy, MC, Talley LD, Roemmich D.  2000.  Seasonal to interannual variability from expendable bathythermograph and TOPEX/Poseidon altimeter data in the South Pacific subtropical gyre. Journal of Geophysical Research-Oceans. 105:19535-19550.   10.1029/2000jc900056   AbstractWebsite

Estimates of dynamic height anomalies from expendable bathythermograph (XBT) and TOPEX/Poseidon (T/P) sea surface height (SSH) measurements were compared along a, transect at similar to 30 degrees S in the South Pacific. T/P SSH anomalies were calculated relative to a 5 year time mean. XBT dynamic height was calculated relative to 750 m using measured temperature and an objectively mapped climatological temperature-salinity relationship. The anomaly was obtained by subtracting out an objectively-mapped climatological dynamic height relative to 750 m. XBT temperature sections show evidence of a double-gyre structure, related to changes in shallow isopycnals near the gyre's center. XBT dynamic height and T/P SSH anomalies compare well with an RMS difference of 3.8 cm and a coherence above 0.7 for scales larger than 300 km. The differences between the two measures of dynamic height yield systematic patterns. Time-varying spatial averages of the differences are found to be related to changes in Sverdrup transport, zonal surface slope differences, and the 6 degrees C isotherm depth. Higher zonally averaged altimetry SSH than zonally averaged XBT height and larger northward transport from altimetry SSH than from XBT height correspond to gyre spinup determined from Sverdrup transport changes. This implies mass storage during gyre spinup due to the phase lag between the Ekman pumping and the full baroclinic Sverdrup response. Increases in the spatially averaged differences and zonal slope differences, associated with gyre spinup, correspond to shoaling in the 6 degrees C isotherm depth, requiring deep baroclinic changes out of phase with the 6 degrees C isotherm depth changes.