Publications with links

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Whalen, CB, MacKinnon JA, Talley LD.  2018.  Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nature Geoscience. 11:842-+.   10.1038/s41561-018-0213-6   AbstractWebsite

Oceanic mesoscale structures such as eddies and fronts can alter the propagation, breaking and subsequent turbulent mixing of wind-generated internal waves. However, it has been difficult to ascertain whether these processes affect the global-scale patterns, timing and magnitude of turbulent mixing, thereby powering the global oceanic overturning circulation and driving the transport of heat and dissolved gases. Here we present global evidence demonstrating that mesoscale features can significantly enhance turbulent mixing due to wind-generated internal waves. Using internal wave-driven mixing estimates calculated from Argo profiling floats between 30 degrees and 45 degrees N, we find that both the amplitude of the seasonal cycle of turbulent mixing and the response to increases in the wind energy flux are larger to a depth of at least 2,000 m in the presence of a strong and temporally uniform field of mesoscale eddy kinetic energy. Mixing is especially strong within energetic anticyclonic mesoscale features compared to cyclonic features, indicating that local modification of wind-driven internal waves is probably one mechanism contributing to the elevated mixing observed in energetic mesoscale environments.

Gray, AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL, Talley LD, Wanninkhof R, Williams NL, Sarmiento JL.  2018.  Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophysical Research Letters. 45:9049-9057.   10.1029/2018gl078013   AbstractWebsite

Although the Southern Ocean is thought to account for a significant portion of the contemporary oceanic uptake of carbon dioxide (CO2), flux estimates in this region are based on sparse observations that are strongly biased toward summer. Here we present new estimates of Southern Ocean air-sea CO2 fluxes calculated with measurements from biogeochemical profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling project during 2014-2017. Compared to ship-based CO2 flux estimates, the float-based fluxes find significantly stronger outgassing in the zone around Antarctica where carbon-rich deep waters upwell to the surface ocean. Although interannual variability contributes, this difference principally stems from the lack of autumn and winter ship-based observations in this high-latitude region. These results suggest that our current understanding of the distribution of oceanic CO2 sources and sinks may need revision and underscore the need for sustained year-round biogeochemical observations in the Southern Ocean. Plain Language Summary The Southern Ocean absorbs a great deal of carbon dioxide from the atmosphere and helps to shape the climate of Earth. However, we do not have many observations from this part of the world, especially in winter, because it is remote and inhospitable. Here we present new observations from robotic drifting buoys that take measurements of temperature, salinity, and other water properties year-round. We use these data to estimate the amount of carbon dioxide being absorbed by the Southern Ocean. In the open water region close to Antarctica, the new estimates are remarkably different from the previous estimates, which were based on data collected from ships. We discuss some possible reasons that the float-based estimate is different and how this changes our understanding of how the ocean absorbs carbon dioxide.

Ogle, SE, Tamsitt V, Josey SA, Gille ST, Cerovecki I, Talley LD, Weller RA.  2018.  Episodic Southern Ocean heat loss and its mixed layer impacts revealed by the farthest south multiyear surface flux mooring. Geophysical Research Letters. 45:5002-5010.   10.1029/2017gl076909   AbstractWebsite

The Ocean Observatories Initiative air-sea flux mooring deployed at 54.08 degrees S, 89.67 degrees W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long-term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air-sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of -294W/m(2)) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air-sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 sigma and 3 sigma turbulent heat loss events in winter 2015 led to deep mixed layers (>300m), which were nonexistent in winter 2016.