Publications with links

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Holte, J, Talley L.  2009.  A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation. Journal of Atmospheric and Oceanic Technology. 26:1920-1939.   10.1175/2009jtecho543.1   AbstractWebsite

A new hybrid method for finding the mixed layer depth (MLD) of individual ocean profiles models the general shape of each profile, searches for physical features in the profile, and calculates threshold and gradient MLDs to assemble a suite of possible MLD values. It then analyzes the patterns in the suite to select a final MLD estimate. The new algorithm is provided in online supplemental materials. Developed using profiles from all oceans, the algorithm is compared to threshold methods that use the C. de Boyer Monte gut et al. criteria and to gradient methods using 13 601 Argo profiles from the southeast Pacific and southwest Atlantic Oceans. In general, the threshold methods find deeper MLDs than the new algorithm and the gradient methods produce more anomalous MLDs than the new algorithm. When constrained to using only temperature profiles, the algorithm offers a clear improvement over the temperature threshold and gradient methods; the new temperature algorithm MLDs more closely approximate the density algorithm MLDs than the temperature threshold and gradient MLDs. The algorithm is applied to profiles from a formation region of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW). The density algorithm finds that the deepest MLDs in this region routinely reach 500 dbar and occur north of the A. H. Orsi et al. mean Subantarctic Front in the southeastern Pacific Ocean. The deepest MLDs typically occur in August and September and are congruent with the subsurface salinity minimum, a signature of AAIW.

Park, GH, Lee K, Tishchenko P, Min DH, Warner MJ, Talley LD, Kang DJ, Kim KR.  2006.  Large accumulation of anthropogenic CO(2) in the East (Japan) Sea and its significant impact on carbonate chemistry. Global Biogeochemical Cycles. 20   10.1029/2005gb002676   AbstractWebsite

[ 1] This paper reports on a basin-wide inventory of anthropogenic CO(2) in the East ( Japan) Sea determined from high-quality alkalinity, chlorofluorocarbon, and nutrient data collected during a summertime survey in 1999 and total dissolved inorganic carbon data calculated from pH and alkalinity measurements. The data set comprises measurements from 203 hydrographic stations and covers most of the East Sea with the exception of the northwestern boundary region. Anthropogenic CO(2) concentrations are estimated by separating this value from total dissolved inorganic carbon using a tracer-based ( chlorofluorocarbon) separation technique. Wintertime surface CFC-12 data collected in regions of deep water formation off Vladivostok, Russia, improve the accuracy of estimates of anthropogenic CO(2) concentrations by providing improved air-sea CO(2) disequilibrium values for intermediate and deep waters. Our calculation yields a total anthropogenic CO(2) inventory in the East Sea of 0.40 +/- 0.06 petagrams of carbon as of 1999. Anthropogenic CO(2) has already reached the bottom of the East Sea, largely owing to the effective transport of anthropogenic CO(2) from the surface to the ocean interior via deep water formation in the waters off Vladivostok. The highest specific column inventory ( vertically integrated inventory per square meter) of anthropogenic CO(2) of 80 mol C m(-2) is found in the Japan Basin ( 40 degrees N - 44 degrees N). Comparison of this inventory with those for other major basins of the same latitude band reveal that the East Sea values are much higher than the inventory for the Pacific Ocean (20 - 30 mol C m(-2)) and are similar to the inventory for the North Atlantic (66 - 72 mol C m(-2)). The substantial accumulation of anthropogenic CO(2) in the East Sea during the industrial era has caused the aragonite and calcite saturation horizons to move upward by 80 - 220 m and 500 - 700 m, respectively. These upward movements are approximately 5 times greater than those found in the North Pacific. Both the large accumulation of anthropogenic CO(2) and its significant impact on carbonate chemistry in the East Sea suggest that this sea is an important site for monitoring the future impact of the oceanic invasion of anthropogenic CO(2).

Talley, LD.  2003.  Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography. 33:530-560.   10.1175/1520-0485(2003)033<0530:siadoc>;2   AbstractWebsite

The ocean's overturning circulation and associated heat transport are divided into contributions based on water mass ventilation from 1) shallow overturning within the wind-driven subtropical gyres to the base of the thermocline, 2) overturning into the intermediate depth layer (500-2000 m) in the North Atlantic and North Pacific, and 3) overturning into the deep layers in the North Atlantic (Nordic Seas overflows) and around Antarctica. The contribution to South Pacific and Indian heat transport from the Indonesian Throughflow is separated from that of the subtropical gyres and is small. A shallow overturning heat transport of 0.6 PW dominates the 0.8-PW total heat transport at 24degreesN in the North Pacific but carries only 0.1-0.4 PW of the 1.3-PW total in the North Atlantic at 24degreesN. Shallow overturning heat transports in the Southern Hemisphere are also poleward: -0.2 to -0.3 PW southward across 30degreesS in each of the Pacific and Indian Oceans but only -0.1 PW in the South Atlantic. Intermediate water formation of 2 and 7 Sv (1 Sv = 10(6) m(3) s(-1)) carries 0.1 and 0.4 PW in the North Pacific and Atlantic, respectively, while North Atlantic Deep Water formation of 19 Sv carries 0.6 PW. Because of the small temperature differences between Northern Hemisphere deep waters that feed the colder Antarctic Bottom Water (Lower Circumpolar Deep Water), the formation of 22 Sv of dense Antarctic waters is associated with a heat transport of only -0.14 PW across 30degreesS (all oceans combined). Upwelling of Circumpolar Deep Water north of 30degreesS in the Indian (14 Sv) and South Pacific (14 Sv) carries -0.2 PW in each ocean.

Talley, LD, Johnson GC.  1994.  Deep, Zonal Subequatorial Currents. Science. 263:1125-1128.   10.1126/science.263.5150.1125   AbstractWebsite

Large-scale, westward-extending tongues of warm (Pacific) and cold (Atlantic) water are found between 2000 and 3000 meters both north and south of the equator in the Pacific and Atlantic oceans. They are centered at 5-degrees to 8-degrees north and 10-degrees to 15-degrees south (Pacific) and 5-degrees to 8-degrees north and 15-degrees to 20-degrees south (Atlantic). They are separated in both oceans by a contrasting eastward-extending tongue, centered at about 1-degrees to 2-degrees south, in agreement with previous helium isotope observations (Pacific). Thus, the indicated deep tropical westward flows north and south of the equator and eastward flow near the equator may result from more general forcing than the hydrothermal forcing previously hypothesized.