Publications with links

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Talley, LD, Rosso I, Kamenkovich I, Mazloff MR, Wang J, Boss E, Gray AR, Johnson KS, Key RM, Riser SC, Williams NL, Sarmiento JL.  2019.  Southern Ocean biogeochemical float deployment strategy, with example from the Greenwich meridian line (GO-SHIP A12). Journal of Geophysical Research-Oceans. 124:403-431.   10.1029/2018jc014059   AbstractWebsite

Biogeochemical Argo floats, profiling to 2,000-m depth, are being deployed throughout the Southern Ocean by the Southern Ocean Carbon and Climate Observations and Modeling program (SOCCOM). The goal is 200 floats by 2020, to provide the first full set of annual cycles of carbon, oxygen, nitrate, and optical properties across multiple oceanographic regimes. Building from no prior coverage to a sparse array, deployments are based on prior knowledge of water mass properties, mean frontal locations, mean circulation and eddy variability, winds, air-sea heat/freshwater/carbon exchange, prior Argo trajectories, and float simulations in the Southern Ocean State Estimate and Hybrid Coordinate Ocean Model (HYCOM). Twelve floats deployed from the 2014-2015 Polarstern cruise from South Africa to Antarctica are used as a test case to evaluate the deployment strategy adopted for SOCCOM's 20 deployment cruises and 126 floats to date. After several years, these floats continue to represent the deployment zones targeted in advance: (1) Weddell Gyre sea ice zone, observing the Antarctic Slope Front, and a decadally-rare polynya over Maud Rise; (2) Antarctic Circumpolar Current (ACC) including the topographically steered Southern Zone chimney where upwelling carbon/nutrient-rich deep waters produce surprisingly large carbon dioxide outgassing; (3) Subantarctic and Subtropical zones between the ACC and Africa; and (4) Cape Basin. Argo floats and eddy-resolving HYCOM simulations were the best predictors of individual SOCCOM float pathways, with uncertainty after 2years of order 1,000km in the sea ice zone and more than double that in and north of the ACC.

Delman, AS, McClean JL, Sprintall J, Talley LD, Bryan FO.  2018.  Process-specific contributions to anomalous Java mixed layer cooling during positive IOD events. Journal of Geophysical Research-Oceans. 123:4153-4176.   10.1029/2017jc013749   AbstractWebsite

Negative sea surface temperature (SST) anomalies associated with positive Indian Ocean Dipole (pIOD) events first appear in the seasonal upwelling zone along the southern coast of Java during May-July. The evolution of anomalous SSTs in this coastal region is analyzed by computing a temperature budget using output from a strongly eddy-active ocean general circulation model. The seasonal cooling south of Java in May-July is driven by a reduction in incoming shortwave radiation and by vertical mixing, consistent with earlier studies in the region; however, the model budget also shows an advective contribution that drives anomalous cooling at the onset of pIOD events. To identify which process(es) are responsible for the anomalous advective cooling during pIOD events, a novel process index regression method is used to estimate the contributions of wind stress, equatorial Kelvin waves, mesoscale eddies, and Lombok Strait flow to anomalous cooling south of Java. Using this method, wind stress forcing along the west coast of Sumatra is found to make the most substantial contribution to anomalous cooling south of Java, with lesser contributions from equatorially sourced Kelvin waves and local wind stress. Mesoscale eddies redistribute heat from the Lombok Strait outflow, and have an anomalous warming effect on the eastern side of the upwelling region. The process-specific temperature budget south of Java highlights the importance of wind stress forcing west of Sumatra relative to equatorial and local forcing, and explains most of the mixed layer temperature anomaly evolution associated with advection during pIOD events. Plain Language Summary Climate variations from year to year in much of the Indian Ocean region are controlled by a phenomenon called the Indian Ocean Dipole, which is similar to El Nino but centered on the Indian Ocean basin. The positive phase of the Indian Ocean Dipole, or pIOD, typically brings drought conditions to Indonesia and unusually heavy rainfall to east Africa. These pIOD events are caused in part by unusually strong cooling in sea surface temperatures south of the Indonesian island of Java, but the series of events that causes this strong cooling has not been well understood previously. This paper uses the results obtained from a high-resolution ocean model, together with a new method for analyzing these results, to study exactly how much sea surface cooling (or warming) is caused by specific processes in the Java region. The study finds that changes in wind patterns adjacent to the Indonesian island of Sumatra can explain nearly all of the unusual cooling that develops south of Java in years when these pIOD events happen. The analysis method introduced in this paper may be adapted to study how processes in the ocean or atmosphere cause changes in the Earth's climate system.

Russell, JL, Kamenkovich I, Bitz C, Ferrari R, Gille ST, Goodman PJ, Hallberg R, Johnson K, Khazmutdinova K, Marinov I, Mazloff M, Riser S, Sarmiento JL, Speer K, Talley LD, Wanninkhof R.  2018.  Metrics for the evaluation of the Southern Ocean in coupled climate models and earth system models. Journal of Geophysical Research-Oceans. 123:3120-3143.   10.1002/2017jc013461   AbstractWebsite

The Southern Ocean is central to the global climate and the global carbon cycle, and to the climate's response to increasing levels of atmospheric greenhouse gases, as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic trend. Due to the region's complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes, and topography. Observationally based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate and earth system models. New observations and understanding have allowed for progress in the creation of observationally based data/model metrics for the Southern Ocean. Metrics presented here provide a means to assess multiple simulations relative to the best available observations and observational products. Climate models that perform better according to these metrics also better simulate the uptake of heat and carbon by the Southern Ocean. This report is not strictly an intercomparison, but rather a distillation of key metrics that can reliably quantify the "accuracy" of a simulation against observed, or at least observable, quantities. One overall goal is to recommend standardization of observationally based benchmarks that the modeling community should aspire to meet in order to reduce uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake. Plain Language Summary Observationally based metrics are essential for the standardized evaluation of climate and earth system models, and for reducing the uncertainty associated with future projections by those models.

Llanillo, PJ, Pelegri JL, Talley LD, Pena-Izquierdo J, Cordero RR.  2018.  Oxygen pathways and budget for the Eastern South Pacific Oxygen Minimum Zone. Journal of Geophysical Research-Oceans. 123:1722-1744.   10.1002/2017jc013509   AbstractWebsite

Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.8 +/- 0.42 mu mol kg(-1) yr(-1)) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).

Briggs, EM, Martz TR, Talley LD, Mazloff MR, Johnson KS.  2018.  Physical and biological drivers of biogeochemical tracers within the seasonal sea ice zone of the Southern Ocean from profiling floats. Journal of Geophysical Research-Oceans. 123:746-758.   10.1002/2017jc012846   AbstractWebsite

Here we present initial findings from nine profiling floats equipped with pH, O-2, , and other biogeochemical sensors that were deployed in the seasonal ice zone (SIZ) of the Southern Ocean in 2014 and 2015 through the Southern Ocean Carbon and Climate Observations and Modelling (SOCCOM) project. A large springtime phytoplankton bloom was observed that coincided with sea ice melt for all nine floats. We argue this bloom results from a shoaling of the mixed layer depth, increased vertical stability, and enhanced nutrient and light availability as the sea ice melts. This interpretation is supported by the absence of a springtime bloom when one of the floats left the SIZ in the second year of observations. During the sea ice covered period, net heterotrophic conditions were observed. The rate of uptake of O-2 and release of dissolved inorganic carbon (derived from pH and estimated total alkalinity) and is reminiscent of biological respiration and is nearly Redfieldian for the nine floats. A simple model of mixed layer physics was developed to separate the physical and biological components of the signal in pH and O-2 over one annual cycle for a float in the Ross Sea SIZ. The resulting annual net community production suggests that seasonal respiration during the ice covered period of the year nearly balances the production in the euphotic layer of up to 5 molCm(-2) during the ice free period leading to a net of near zero carbon exported to depth for this one float.