Publications with links

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Gray, AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL, Talley LD, Wanninkhof R, Williams NL, Sarmiento JL.  2018.  Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophysical Research Letters. 45:9049-9057.   10.1029/2018gl078013   AbstractWebsite

Although the Southern Ocean is thought to account for a significant portion of the contemporary oceanic uptake of carbon dioxide (CO2), flux estimates in this region are based on sparse observations that are strongly biased toward summer. Here we present new estimates of Southern Ocean air-sea CO2 fluxes calculated with measurements from biogeochemical profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling project during 2014-2017. Compared to ship-based CO2 flux estimates, the float-based fluxes find significantly stronger outgassing in the zone around Antarctica where carbon-rich deep waters upwell to the surface ocean. Although interannual variability contributes, this difference principally stems from the lack of autumn and winter ship-based observations in this high-latitude region. These results suggest that our current understanding of the distribution of oceanic CO2 sources and sinks may need revision and underscore the need for sustained year-round biogeochemical observations in the Southern Ocean. Plain Language Summary The Southern Ocean absorbs a great deal of carbon dioxide from the atmosphere and helps to shape the climate of Earth. However, we do not have many observations from this part of the world, especially in winter, because it is remote and inhospitable. Here we present new observations from robotic drifting buoys that take measurements of temperature, salinity, and other water properties year-round. We use these data to estimate the amount of carbon dioxide being absorbed by the Southern Ocean. In the open water region close to Antarctica, the new estimates are remarkably different from the previous estimates, which were based on data collected from ships. We discuss some possible reasons that the float-based estimate is different and how this changes our understanding of how the ocean absorbs carbon dioxide.

Williams, NL, Feely RA, Sabine CL, Dickson AG, Swift JH, Talley LD, Russell JL.  2015.  Quantifying anthropogenic carbon inventory changes in the Pacific sector of the Southern Ocean. Marine Chemistry. 174:147-160.   10.1016/j.marchem.2015.06.015   AbstractWebsite

The Southern Ocean plays a major role in mediating the uptake, transport, and long-term storage of anthropogenic carbon dioxide (CO2) into the deep ocean. Examining the magnitude and spatial distribution of this oceanic carbon uptake is critical to understanding how the earth's carbon system will react to continued increases in this greenhouse gas. Here, we use the extended multiple linear regression technique to quantify the total and anthropogenic change in dissolved inorganic carbon (DIC) along the S04P and P16S CLIVAR/U.S. Global Ocean Carbon and Repeat Hydrography Program lines south of 67 degrees S in the Pacific sector of the Southern Ocean between 1992 and 2011 using discrete bottle measurements from repeat occupations. Along the S04P section, which is located in the seasonal sea ice zone south of the Antarctic Circumpolar Current in the Pacific, the anthropogenic component of the DIC increase from 1992 to 2011 is mostly found in the Antarctic Surface Water (AASW, upper 100 m), while the increase in DIC below the mixed layer in the Circumpolar Deep Water can be primarily attributed to either a slowdown in circulation or decreased ventilation of deeper, high CO2 waters. In the AASW we calculate an anthropogenic increase in DIC of 12-18 mu mol kg(-1) and an average storage rate of anthropogenic CO2 of 0.10 +/- 0.02 mol m(-2) yr(-1) for this region compared to a global average of 0.5 +/- 0.2 mol m(-2) yr(-1). In surface waters this anthropogenic CO2 uptake results in an average pH decrease of 0.0022 +/- 0.0004 pH units yr(-1), a 0.47 +/- 0.10% yr(-1) decrease in the saturation state of aragonite (Omega(Aragonite)) and a 2.0 +/- 0.7 m yr(-1) shoaling of the aragonite saturation horizons (calculated for the Omega(Aragonite) = 1.3 contour). (C) 2015 Published by Elsevier B.V.