Publications with links

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Delman, AS, McClean JL, Sprintall J, Talley LD, Bryan FO.  2018.  Process-specific contributions to anomalous Java mixed layer cooling during positive IOD events. Journal of Geophysical Research-Oceans. 123:4153-4176.   10.1029/2017jc013749   AbstractWebsite

Negative sea surface temperature (SST) anomalies associated with positive Indian Ocean Dipole (pIOD) events first appear in the seasonal upwelling zone along the southern coast of Java during May-July. The evolution of anomalous SSTs in this coastal region is analyzed by computing a temperature budget using output from a strongly eddy-active ocean general circulation model. The seasonal cooling south of Java in May-July is driven by a reduction in incoming shortwave radiation and by vertical mixing, consistent with earlier studies in the region; however, the model budget also shows an advective contribution that drives anomalous cooling at the onset of pIOD events. To identify which process(es) are responsible for the anomalous advective cooling during pIOD events, a novel process index regression method is used to estimate the contributions of wind stress, equatorial Kelvin waves, mesoscale eddies, and Lombok Strait flow to anomalous cooling south of Java. Using this method, wind stress forcing along the west coast of Sumatra is found to make the most substantial contribution to anomalous cooling south of Java, with lesser contributions from equatorially sourced Kelvin waves and local wind stress. Mesoscale eddies redistribute heat from the Lombok Strait outflow, and have an anomalous warming effect on the eastern side of the upwelling region. The process-specific temperature budget south of Java highlights the importance of wind stress forcing west of Sumatra relative to equatorial and local forcing, and explains most of the mixed layer temperature anomaly evolution associated with advection during pIOD events. Plain Language Summary Climate variations from year to year in much of the Indian Ocean region are controlled by a phenomenon called the Indian Ocean Dipole, which is similar to El Nino but centered on the Indian Ocean basin. The positive phase of the Indian Ocean Dipole, or pIOD, typically brings drought conditions to Indonesia and unusually heavy rainfall to east Africa. These pIOD events are caused in part by unusually strong cooling in sea surface temperatures south of the Indonesian island of Java, but the series of events that causes this strong cooling has not been well understood previously. This paper uses the results obtained from a high-resolution ocean model, together with a new method for analyzing these results, to study exactly how much sea surface cooling (or warming) is caused by specific processes in the Java region. The study finds that changes in wind patterns adjacent to the Indonesian island of Sumatra can explain nearly all of the unusual cooling that develops south of Java in years when these pIOD events happen. The analysis method introduced in this paper may be adapted to study how processes in the ocean or atmosphere cause changes in the Earth's climate system.

2014
Oka, E, Uehara K, Nakano T, Suga T, Yanagimoto D, Kouketsu S, Itoh S, Katsura S, Talley LD.  2014.  Synoptic observation of Central Mode Water in its formation region in spring 2003. Journal of Oceanography. 70:521-534.   10.1007/s10872-014-0248-2   AbstractWebsite

Hydrographic data east of Japan from five research cruises and Argo profiling floats in spring 2003 have been analyzed to examine the relationship of the formation of Central Mode Water (CMW) and Transition Region Mode Water (TRMW) in late winter 2003 to thermohaline fronts and mesoscale eddies. TRMW and the denser variety of CMW (D-CMW) were formed continuously just south of the subarctic frontal zone between 155 degrees E and 165 degrees W with little relation to eddies, suggesting that the absence of the permanent thermocline and halocline in this area is essential for the formation. The lighter variety of CMW (L-CMW) was formed south of the Kuroshio bifurcation front and east of 165 degrees E, partly in an anticyclonic eddy associated with the Kuroshio Extension. Some portion of D-CMW and L-CMW likely had been subducted to the permanent pycnocline by crossing southward the Kuroshio bifurcation front and the Kuroshio Extension front, respectively. In contrast, the formation of these waters in the western regions was inactive and was significantly different from that described previously using multiyear Argo float data. West of 155 degrees E, TRMW and D-CMW were formed only in two anticyclonic eddies that had been detached from the Kuroshio Extension 1-2 years ago. L-CMW was hardly formed west of 165 degrees E, which might be related to the upstream Kuroshio Extension being in its stable state characterized by low regional eddy activity.

2003
Yun, JY, Talley LD.  2003.  Cabbeling and the density of the North Pacific Intermediate Water quantified by an inverse method. Journal of Geophysical Research-Oceans. 108   10.1029/2002jc001482   AbstractWebsite

North Pacific Intermediate Water (NPIW), defined as the main salinity minimum in the subtropical North Pacific, at a density of 26.7-26.8sigma(theta), is denser than the winter surface water in the Oyashio which is the source of the salinity minimum. We showed previously that cabbeling and double diffusion during mixing between the Oyashio water and more saline Kuroshio water can account for the density increase from the surface source water to the salinity minimum. An inverse method is employed herein to quantify the effect of cabbeling, using CTD data from the western North Pacific. The difference between proportional mixing between parcels of Oyashio and Kuroshio waters and mixing along isopycnals is exploited to compute the convergence of water into density layers. The diapycnal transport convergence associated with cabbeling into the NPIW density layer is estimated to be 0.56 Sv for an assumed turnover time of 1 year in the region between 142degreesE and 152degreesE. Diapycnal transport convergences in the regions 152degreesE-165degreesE, 165degreesE-175degreesW, and 175degreesW-136degreesW are similarly estimated by assuming longer turnover times. We estimate that the total diapycnal transport convergence into the NPIW density layer may be up to 2.3 Sv in the entire NPIW region.

2001
Talley, LD, Yun JY.  2001.  The role of cabbeling and double diffusion in setting the density of the North Pacific intermediate water salinity minimum. Journal of Physical Oceanography. 31:1538-1549.   10.1175/1520-0485(2001)031<1538:trocad>2.0.co;2   AbstractWebsite

The top of the North Pacific Intermediate Water (NPIW) in the subtropical North Pacific is identified with the main salinity minimum in the density range sigma (theta) = 26.7-26.8. The most likely source of low salinity for the NPIW salinity minimum is the Oyashio winter mixed layer, of density sigma (theta) = 26.5- 26.65. The Oyashio waters mix with Kuroshio waters in the broad region known as the Mixed Water Region (MWR), between the separated Kuroshio and Oyashio Fronts just east of Japan. It is shown that cabbeling during mixing of the cold, fresh Oyashio winter mixed layer water with the warm, saline Kuroshio water increases the density of the mixture by up to sigma (theta) = 0.07 at densities around sigma (theta) = 26.6-26.65, regardless of the mixing mechanism. Thus cabbeling accounts for about half of the observed density difference between the Oyashio winter mixed layer water and the top of the NPIW. Double diffusion during mixing of the interleaving layers of Oyashio and Kuroshio waters in the MWR can also change the density of the mixing intrusions. Density ratios favorable to double diffusion are shown to be especially prominent in Oyashio intrusions into a Kuroshio warm core ring in the 1989 data examined here. The average potential temperature-salinity profile of the new subtropical NPIW just east of the MWR, with its nearly uniform salinity, suggests the dominance of salt fingering over diffusive layering. Using the observed salinity and density differences between Oyashio surface water and the NPIW salinity minimum, after subtracting the density difference ascribed to cabbeling, an effective flux ratio of about 0.8 is estimated for possible double diffusive processes in the MWR.