Publications with links

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Gray, AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL, Talley LD, Wanninkhof R, Williams NL, Sarmiento JL.  2018.  Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophysical Research Letters. 45:9049-9057.   10.1029/2018gl078013   AbstractWebsite

Although the Southern Ocean is thought to account for a significant portion of the contemporary oceanic uptake of carbon dioxide (CO2), flux estimates in this region are based on sparse observations that are strongly biased toward summer. Here we present new estimates of Southern Ocean air-sea CO2 fluxes calculated with measurements from biogeochemical profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling project during 2014-2017. Compared to ship-based CO2 flux estimates, the float-based fluxes find significantly stronger outgassing in the zone around Antarctica where carbon-rich deep waters upwell to the surface ocean. Although interannual variability contributes, this difference principally stems from the lack of autumn and winter ship-based observations in this high-latitude region. These results suggest that our current understanding of the distribution of oceanic CO2 sources and sinks may need revision and underscore the need for sustained year-round biogeochemical observations in the Southern Ocean. Plain Language Summary The Southern Ocean absorbs a great deal of carbon dioxide from the atmosphere and helps to shape the climate of Earth. However, we do not have many observations from this part of the world, especially in winter, because it is remote and inhospitable. Here we present new observations from robotic drifting buoys that take measurements of temperature, salinity, and other water properties year-round. We use these data to estimate the amount of carbon dioxide being absorbed by the Southern Ocean. In the open water region close to Antarctica, the new estimates are remarkably different from the previous estimates, which were based on data collected from ships. We discuss some possible reasons that the float-based estimate is different and how this changes our understanding of how the ocean absorbs carbon dioxide.

Talley, LD, Sprintall J.  2005.  Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. Journal of Geophysical Research-Oceans. 110   10.1029/2004jc002826   AbstractWebsite

[1] The narrow westward flow of the South Equatorial Current ( SEC), centered at 12 degrees S and carrying freshened water from the Indonesian seas, is traced across the Indian Ocean using data from the World Ocean Circulation Experiment. The jet is remarkably zonal and quasi-barotropic, following the potential vorticity contours characteristic of the tropics, separating higher-oxygen and lower-nutrient waters of the subtropics from the oxygen-depleted waters of the tropics. The fresh surface waters are the usual Indonesian Throughflow Water reported previously. Less well studied is the intermediate-depth SEC carrying fresher water from the Banda Sea and Pacific, known as Indonesian Intermediate Water (IIW) or Banda Sea Intermediate Water. The high-silica signature of IIW is documented here, permitting us to ( 1) trace the spread of IIW from sill density at Leti Strait to higher density as it is diluted toward the west and ( 2) define an IIW core for transport estimates, of 3 to 7 Sv westward, using geostrophic and LADCP velocities. The high IIW silica is traced to the Banda Sea, arising from known diapycnal mixing of Pacific waters entering through Lifamatola Strait and local sources. New heat, freshwater, oxygen, and silica budgets within the Indonesian seas suggest at least 3 Sv of inflow through the relatively deep Lifamatola Strait, supplementing the observed 9 Sv through the shallower Makassar Strait. Both shallow and deep inflows and outflows, along with vigorous mixing and internal sources within the Indonesian seas, are required to capture the transformation of Pacific to Indonesian Throughflow waters.