Publications with links

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Holte, J, Talley LD, Gilson J, Roemmich D.  2017.  An Argo mixed layer climatology and database. Geophysical Research Letters. 44:5618-5626.   10.1002/2017gl073426   AbstractWebsite

A global climatology and database of mixed layer properties are computed from nearly 1,250,000 Argo profiles. The climatology is calculated with both a hybrid algorithm for detecting the mixed layer depth (MLD) and a standard threshold method. The climatology provides accurate information about the depth, properties, extent, and seasonal patterns of global mixed layers. The individual profile results in the database can be used to construct time series of mixed layer properties in specific regions of interest. The climatology and database are available online at . The MLDs calculated by the hybrid algorithm are shallower and generally more accurate than those of the threshold method, particularly in regions of deep winter mixed layers; the new climatology differs the most from existing mixed layer climatologies in these regions. Examples are presented from the Labrador and Irminger Seas, the Southern Ocean, and the North Atlantic Ocean near the Gulf Stream. In these regions the threshold method tends to overestimate winter MLDs by approximately 10% compared to the algorithm.

Dong, S, Sprintall J, Gille ST, Talley L.  2008.  Southern Ocean mixed-layer depth from Argo float profiles. Journal of Geophysical Research-Oceans. 113   10.1029/2006jc004051   AbstractWebsite

Argo float profiles of temperature, salinity, and pressure are used to derive the mixed-layer depth (MLD) in the Southern Ocean. MLD is determined from individual profiles using both potential density and potential temperature criteria, and a monthly climatology is derived from individual MLDs using an objective mapping method. Quantitative data are available in the auxiliary material. The spatial structures of MLDs are similar in each month, with deep mixed layers within and just north of the Antarctic Circumpolar Current (ACC) in the Pacific and Indian oceans. The deepest mixed layers are found from June to October and are located just north of the ACC where Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water ( SAMW) are formed. Examination of individual MLDs indicates that deep mixed layers ( MLD >= 400 m) from both the density and temperature criteria are concentrated in a narrow surface density band which is within the density range of SAMW. The surface salinity for these deep mixed layers associated with the SAMW formation are slightly fresher compared to historical estimates. Differences in air-sea heat exchanges, wind stress, and wind stress curl in the Pacific and Indian oceans suggest that the mode water formation in each ocean basin may be preconditioned by different processes. Wind mixing and Ekman transport of cold water from the south may assist the SAMW formation in the Indian Ocean. In the eastern Pacific, the formation of mode water is potentially preconditioned by the relative strong cooling and weak stratification from upwelling.

Gladyshev, S, Talley L, Kantakov G, Khen G, Wakatsuchi M.  2003.  Distribution, formation, and seasonal variability of Okhotsk Sea Mode Water. Journal of Geophysical Research-Oceans. 108   10.1029/2001jc000877   AbstractWebsite

Russian historical data and recently completed conductivity-temperature-depth surveys are used to examine the formation and spread in the deep Ohkotsk Sea of dense shelf water (DSW) produced in the Okhotsk Sea polynyas. Isopycnal analysis indicates that all of the main polynyas contribute to the ventilation at sigma(theta) < 26.80, including the Okhotsk Sea Mode Water (OSMW), which has densities σ(θ) = 26.7-27.0. At densities greater than 26.9 σ(θ) the northwest polynya is the only contributor to OSMW. (Although Shelikhov Bay polynyas produce the densest water with σ(θ) > 27.1, vigorous tidal mixing leads to outflow of water with a density of only about 26.7 sigma(theta)). In the western Okhotsk Sea the East Sakhalin Current rapidly transports modified dense shelf water along the eastern Sakhalin slope to the Kuril Basin, where it is subject to further mixing because of the large anticyclonic eddies and tides. Most of the dense water flows off the shelves in spring. Their average flux does not exceed 0.2 Sv in summer and fall. The shelf water transport and water exchange with the North Pacific cause large seasonal variations of temperature at densities of 26.7-27.0 sigma(theta) (depths of 150-500 m) in the Kuril Basin, where the average temperature minimum occurs in April-May, and the average temperature maximum occurs in September, with a range of 0.2degrees-0.7degreesC. The average seasonal variations of salinity are quite small and do not exceed 0.05 psu. The Soya Water mixed by winter convection, penetrating to depths greater than 200 m, in the southern Kuril Basin also produces freezing water with density greater than 26.7 sigma(theta). Using a simple isopycnal box model and seasonal observations, the OSMW production rate is seen to increase in summer up to 2.2 +/- 1.7 Sv, mainly because of increased North Pacific inflow, and drops in winter to 0.2 +/- 0.1 Sv. A compensating decrease in temperature in the Kuril Basin implies a DSW volume transport of 1.4 +/- 1.1 Sv from February through May. The residence time of the OSMW in the Kuril Basin is 2 +/- 1.7 years.