Publications with links

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Hartin, CA, Fine RA, Sloyan BM, Talley LD, Chereskin TK, Happell J.  2011.  Formation rates of Subantarctic mode water and Antarctic intermediate water within the South Pacific. Deep-Sea Research Part I-Oceanographic Research Papers. 58:524-534.   10.1016/j.dsr.2011.02.010   AbstractWebsite

The formation of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) significantly contributes to the total uptake and storage of anthropogenic gases, such as CO(2) and chlorofluorocarbons (CFCs), within the world's oceans. SAMW and AAIW formation rates in the South Pacific are quantified based on CFC-12 inventories using hydrographic data from WOCE. CLIVAR, and data collected in the austral winter of 2005. This study documents the first wintertime observations of CFC-11 and CFC-12 saturations with respect to the 2005 atmosphere in the formation region of the southeast Pacific for SAMW and AAIW. SAMW is 94% and 95% saturated for CFC-11 and CFC-12, respectively, and AAIW is 60% saturated for both CFC-11 and CFC-12. SAMW is defined from the Subantarctic Front to the equator between potential densities 26.80-27.06 kg m(-3), and AAIW is defined from the Polar Front to 20 degrees N between potential densities 27.06-27.40 kg m(-3). CFC-12 inventories are 16.0 x 10(6) moles for SAMW and 8.7 x 10(6) moles for AAIW, corresponding to formation rates of 7.3 +/- 2.1 Sv for SAMW and 5.8 +/- 1.7 Sv for AAIW circulating within the South Pacific. Inter-ocean transports of SAMW from the South Pacific to the South Atlantic are estimated to be 4.4 +/- 0.6 Sv. Thus, the total formation of SAMW in the South Pacific is approximately 11.7 +/- 2.2 Sv. These formation rates represent the average formation rates over the major period of CFC input, from 1970 to 2005. The CFC-12 inventory maps provide direct evidence for two areas of formation of SAMW, one in the southeast Pacific and one in the central Pacific. Furthermore, eddies in the central Pacific containing high CFC concentrations may contribute to SAMW and to a lesser extent AAIW formation. These CFC-derived rates provide a baseline with which to compare past and future formation rates of SAMW and AAIW. (C) 2011 Elsevier Ltd. All rights reserved.

Ogle, SE, Tamsitt V, Josey SA, Gille ST, Cerovecki I, Talley LD, Weller RA.  2018.  Episodic Southern Ocean heat loss and its mixed layer impacts revealed by the farthest south multiyear surface flux mooring. Geophysical Research Letters. 45:5002-5010.   10.1029/2017gl076909   AbstractWebsite

The Ocean Observatories Initiative air-sea flux mooring deployed at 54.08 degrees S, 89.67 degrees W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long-term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air-sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of -294W/m(2)) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air-sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 sigma and 3 sigma turbulent heat loss events in winter 2015 led to deep mixed layers (>300m), which were nonexistent in winter 2016.