Publications with links

Export 6 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Talley, LD, Feely RA, Sloyan BM, Wanninkhof R, Baringer MO, Bullister JL, Carlson CA, Doney SC, Fine RA, Firing E, Gruber N, Hansell DA, Ishii M, Johnson GC, Katsumata K, Key RM, Kramp M, Langdon C, Macdonald AM, Mathis JT, McDonagh EL, Mecking S, Millero FJ, Mordy CW, Nakano T, Sabine CL, Smethie WM, Swift JH, Tanhua T, Thurnherr AM, Warner MJ, Zhang J-Z.  2016.  Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annual Review of Marine Science. 8:185-215.   10.1146/annurev-marine-052915-100829   AbstractWebsite

Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcingand ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.

Talley, LD, Lobanov V, Ponomarev V, Salyuk A, Tishchenko P, Zhabin I, Riser S.  2003.  Deep convection and brine rejection in the Japan Sea. Geophysical Research Letters. 30   10.1029/2002gl016451   AbstractWebsite

Direct water mass renewal through convection deeper than 1000 m and the independent process of dense water production through brine rejection during sea ice formation occur at only a limited number of sites globally. Our late winter observations in 2000 and 2001 show that the Japan (East) Sea is a part of both exclusive groups. Japan Sea deep convection apparently occurs every winter, but massive renewal of bottom waters through brine rejection had not occurred for many decades prior to the extremely cold winter of 2001. The sites for both renewal mechanisms are south of Vladivostok, in the path of cold continental air outbreaks.

Zhang, HM, Talley LD.  1998.  Heat and buoyancy budgets and mixing rates in the upper thermocline of the Indian and global oceans. Journal of Physical Oceanography. 28:1961-1978.   10.1175/1520-0485(1998)028<1961:habbam>;2   AbstractWebsite

Diapycnal and diathermal diffusivity values in the upper thermocline are estimated from buoyancy and heat budgets for water volumes bounded by isopycnals and isotherms, the air-sea interface, and coastline where applicable. Comprehensive analysis is given to the Indian Ocean, with an extended global general description. The Indian Ocean,gains buoyancy in the north (especially in the northeast) and loses buoyancy in the subtropical south. Freshest and least-dense water appears in the Bay of Bengal and isopycnals outcrop southwestward from there and then southward. Computation of diapycnal diffusivity (K-p) starts from the Bay of Bengal, expanding southwestward and southward and with depth. As isopycnals extend equatorward from the northeast and with increasing depth, K-p remains at about 1.3 cm(2) s(-1) for 20.2 sigma(theta) (Bay of Bengal) to 22.0 sigma(theta) (northeast Indian Ocean). Farther south (poleward) and at greater depth, K-p decreases from 0.9 cm(2) s(-1) for 23.0 sigma(theta) (north of 20 degrees S) to 0.5 cm(2) s(-1) for 25.0 sigma(theta) (north of 35 degrees S). Isotherms outcrop poleward from the equator. Diathermal diffusivity values computed from the heat budget are large at the equator and near the surface (4.0 cm(2) s(-1) for 28.5 degrees C isotherm) but decrease rapidly poleward and with depth (1.3 cm(2) s(-1) for 27.0 degrees C). This indicates stronger mixing either near the equator or the surface, or a possible component in the diathermal direction of the larger isopycnal diffusivity, as isotherms do not follow isopycnals in the upper Indian Ocean north of 10 degrees S. For the 21.0 degrees C isotherm? which closely follows isopycnal 25.0 sigma(theta), the heat budget yields a K-theta again of 0.5 cm(2) s(-1), the value of the diapycnal diffusivity. For the Indian-Pacific system, K-rho decreases from 1.3 cm(2) s(-1) for 22.0 sigma(theta) (the warm pool water, depth similar to 60 m) to 0.9 cm(2) s(-1) for 23.0 sigma(theta) (the tropical water between 20 degrees N and 20 degrees S, depth similar to 100 m), and to 0.1 cm(2) s(-1) for 25.0 sigma(theta) (40 degrees N-40 degrees S, depth similar to 170 m). In the eastern tropical Pacific, K-rho = 1.1 cm(2) s(-1) for 21.5 sigma(theta) (depth similar to 25 m) while K-rho = 0.6 cm(2) s(-1) for 22.0 sigma(theta) (depth similar to 35 m). In the Atlantic, K-rho = 0.6 cm(2) s(-1) for 24.0 sigma(theta) between 20 degrees N and 15 degrees S (depth similar to 80 m), and 0.2 cm(2) s(-1) for 25.0 sigma(theta) between 30 degrees N and 35 degrees S (depth similar to 120 m). For the water volume bounded by 25.5 sigma(theta) farther south and north (50 degrees N-40 degrees S), air-sea buoyancy gain in the Tropics is about the size of the buoyancy loss in the subtropics, and the near-zero net flux may not have significance compared to the errors in the data. For 27.5 sigma(theta), which encompasses the large region from about 65 degrees N to the Antarctic (with midocean average depth of 400 m), K-rho is 0.2 cm(2) s(-1). The results indicate that mixing strength generally decreases poleward and with depth in the upper ocean.

Talley, LD, Min DH, Lobanov VB, Luchin VA, Ponomarev VI, Salyuk AN, Shcherbina AY, Tishchenko PY, Zhabin I.  2006.  Japan/East Sea water masses and their relation to the sea's circulation. Oceanography. 19:32-49.   10.5670/oceanog.2006.42   Abstract

The Japan/East Sea is a major anomaly in the ventilation and overturn picture of the Pacific Ocean. The North Pacific is well known to be nearly unventilated at intermediate and abyssal depths, reflected in low oxygen concentration at 1000 m (Figure 1). (High oxygen indicates newer water in more recent contact with the atmosphere. Oxygen declines as water "ages" after it leaves the sea surface mainly because of bacterial respiration.) Even the small production of North Pacific Intermediate Water in the Okhotsk Sea (Talley, 1991; Shcherbina et al., 2003) and the tiny amount of new bottom water encountered in the deep Bering Sea (Warner and Roden, 1995) have no obvious impact on the overall oxygen distribution at 1000 m and below, down to 3500 m, which is the approximate maximum depth of the Bering, Okhotsk, and Japan/East Seas.

Tishchenko, PY, Talley LD, Lobanov VB, Zhabin IA, Luchm VA, Nedashkovskii AP, Sagalaev SG, Chichkin RV, Shkirnikova EM, Ponomarev VI, Masten D, Kang DJ, Kim KR.  2003.  Seasonal variability of the hydrochemical conditions in the sea of Japan. Oceanology. 43:643-655. AbstractWebsite

In the summer of 1999 and the winter of 2000, during international expeditions of R/Vs Professor Khromov and Roger Revelle, hydrological and hydrochemical studies of the Sea of Japan were performed. Comparing the hydrochemical characteristics of the Sea of Japan in the summer and winter seasons, we have found that the seasonal variability affects not only the upper quasihomogeneous layer but also the deeper layers. This variability is caused by the intensification of vertical mixing during the winter season. It was shown that the mixing intensification in the deep layers of the sea in the winter might be caused both by the slope convection and by the deep convection in the open part of the sea, penetrating deeper than 1000 in. It was found that the area of positive values of the biological constituent of the apparent oxygen consumption coincides with the area of deep convection. The climatic zoning in the distribution of partial pressure of carbon dioxide was revealed for both seasons. In the northwestern part of the sea, carbon dioxide is released into the atmosphere due to the deep convection in the winter and the heating process in the summer. The southern part of the sea absorbs the atmospheric carbon dioxide because of the process of photosynthesis and cooling of the waters supplied from the Korea Strait.

Tishchenko, PY, Talley LD, Nedashkovskii AP, Sagalaev SG, Zvalinskii VI.  2002.  Temporal variability of the hydrochemical properties of the waters of the Sea of Japan. Oceanology. 42:795-803. AbstractWebsite

Hydrochemical studies were performed in the Sea of Japan from onboard R/V Akademik Vinogradov in 1992 and R/Vs Roger Revelle and Professor Khromov in 1999. A comparison of the hydrochemical properties (concentrations of dissolved oxygen and nutrients and proteins of the carbonate system) of the waters of the Sea of Japan with those of the adjacent basins (the Sea of Okhotsk, Pacific Ocean, and East China Sea) demonstrates significant differences between them. In addition, a significant temporal variability of the hydrochemical properties of the intermediate and abyssal waters of the Sea of Japan was revealed. A general increase in the contents of inorganic forms of phosphorus, nitrogen, and normalized organic matter along with a general decrease in the oxygen concentration and normalized alkalinity with time was established. We suggest a model for an open basin, in which the principal reason for the observed features and temporal variability of the hydrochemical properties is related to the water exchange between the Sea of Japan and adjacent basins. A supposition is posed on the strong dependence of the water exchange on the variability of the intensity analysis direction of the major currents of the northwestern Pacific Ocean, especially the Kuroshio Current.