Publications with links

Export 55 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Tsuchiya, M, Talley LD, McCartney MS.  1994.  Water-Mass Distributions in the Western South-Atlantic - a Section from South Georgia Island (54s) Northward across the Equator. Journal of Marine Research. 52:55-&.   10.1357/0022240943076759   AbstractWebsite

A long CTD/hydrographic section with closely spaced stations was made in February-April 1989 in the western Atlantic Ocean between 0-degrees-40'N and South Georgia (54S) along a nominal longitude of 25W. Vertical sections of various properties from CTD and discrete water-sample measurements are presented and discussed in terms of the large-scale circulation of the South Atlantic Ocean. One of the most important results is the identification of various deep-reaching fronts in relation to the large-scale circulation and the distribution of mode waters. Five major fronts are clearly defined in the thermal and salinity fields. These are the Polar (49.5S), Subantarctic (45S), Subtropical (41-42S), Brazil Current (35S) Fronts, and an additional front at 20-22S. The first three are associated with strong baroclinic shear. The Brazil Current Front is a boundary between the denser and lighter types of the Subantarctic Mode Water (SAMW), and the 20-22S front marks the boundary between the anticyclonic subtropical and cyclonic subequatorial gyres. The latter front coincides with the northern terminus of the high-oxygen tongue of the Antarctic Intermediate Water (AAIW) and also with the abrupt shift in density of the high-silica tongue originating in the Upper Circumpolar Water and extending northward. Two pycnostads with temperatures 20-24-degrees-C are observed between 10S and 25S with the denser one in the subtropical and the other lighter one in the subequatorial gyre. A weak thermostad centered at 4-degrees-C occurs in the AAIW between the Subtropical Front and the Subantarctic Front and shows characteristics similar to the densest variety of the SAMW. Another significant result is a detailed description of the complex structure of the deep and bottom waters. The North Atlantic Deep Water (NADW) north of 25S contains two vertical maxima of oxygen (at 2000 m and 3700 m near the equator) separated by intervening low-oxygen water with more influence from the Circumpolar Water. Each maximum is associated with a maximum of salinity and minima of nutrients. The deeper salinity maximum is only weakly defined and is limited to north of 18S, appearing more as vertically uniform salinity. South of 25S the NADW shows only a single maximum of salinity, a single maximum of oxygen, and a single minimum of each nutrient, all lying close together. The salinity maximum south of 25S and the deeper oxygen/salinity maximum north of 1 IS are derived from the same source waters. The less dense NADW containing the shallower extrema of characteristics turns to the east at lower latitudes and does not reach the region south of 25S. The southward spreading of the NADW is interrupted by domains of intensified circumpolar characteristics. This structure is closely related to the basin-scale gyre circulation pattern. The Weddell Sea Deep Water is the densest water we observed and forms a relatively homogeneous layer at the bottom of the Georgia and Argentine Basins. The bottom layer of the Brazil Basin is occupied by the vertically and laterally homogeneous Lower Circumpolar Water.

Tsuchiya, M, Talley LD.  1996.  Water-property distributions along an eastern Pacific hydrographic section at 135W. Journal of Marine Research. 54:541-564.   10.1357/0022240963213583   AbstractWebsite

As part of the World Ocean Circulation Experiment, full-depth CTD/hydrographic measurements with high horizontal and vertical resolutions were made in June-August 1991 along a line extending from 34N to 33S at a nominal longitude of 135W with an additional short leg that connects it to the California coast roughly along 34N. The line spans the major part of the subtropical and intertropical circulation regime of the eastern North and South Pacific. The primary purpose of this paper is to present vertical sections of various properties from CTD and discrete water-sample measurements along this line and to give an overview of some important features as a basis for more comprehensive basin-scale studies. These features include: the frontal structures found in the surface-layer salinity field in the North Pacific; relatively high-salinity water that dominates the subpycnocline layer between the equator and 17N; troughs of the subpycnocline isopycnals for 26.8-27.5 sigma(theta) found at 12N and 12.5S; a permanent thermostad at 9-10 degrees C observed between 4.5N and 15N; the pycnostad of the Subantarctic Mode Water centered at 27.0-27.05 sigma(theta) and developed south of 22S; two types of the Antarctic Intermediate Water representing the subtropical and equatorial circulation regimes; a thick tongue of high silica centered at 3000 m (45.8 sigma(4)) and extending southward across the entire section; deep (2000-3000 m) westward flows at 5-8N and 10-15S separated by an eastward flow at 1-2S; and dense, cold, oxygen-rich, nutrient-poor bottom waters, which are associated with fracture zones and believed to represent the pathways of eastward flows into the Northeast Pacific Basin of the bottom waters separated from the northward-flowing western boundary undercurrent. This work once again demonstrates the usefulness of long lines of high-quality, high-resolution hydrographic stations such as the one described herein in advancing the understanding of the large-scale ocean circulation.

Tsuchiya, M, Talley LD, McCartney MS.  1992.  An Eastern Atlantic Section from Iceland Southward across the Equator. Deep-Sea Research Part a-Oceanographic Research Papers. 39:1885-1917.   10.1016/0198-0149(92)90004-d   AbstractWebsite

A long CTD/hydrographic section with closely-spaced stations was occupied in July-August 1988 from Iceland southward to 3-degrees-S along a nominal longitude of 20-degrees-W. The section extends from the surface down to the bottom, and spans the entire mid-ocean circulation regime of the North Atlantic from the subpolar gyre through the subtropical gyre and the equatorial currents. Vertical sections of potential temperature, salinity and potential density from CTD measurements and of oxygen, silica, phosphate and nitrate, based on discrete water-sample measurements are presented and discussed in the context of the large-scale circulation of the North Atlantic Ocean. The close spacing of high-quality stations reveals some features not described previously. The more important findings include: (1) possible recirculation of the lightest Subpolar Mode Water into the tropics; (2) a thermostad at temperatures of 8-9-degrees-C, lying below that of the Equatorial 13-degrees-C Water; (3) the nutrient distribution in the low-salinity water above the Mediterranean Outflow Water that supports the previous conjecture of northern influence of the Antarctic Intermediate Water; (4) a great deal of lateral structure of the Mediterranean Outflow Water, with a number of lobes of high salinity; (5) an abrupt southern boundary of the Labrador Sea Water at the Azores-Biscay Rise and a vertically well-mixed region to its south; (6) a sharp demarcation in the central Iceland Basin between the newest Iceland-Scotland Overflow Water and older bottom water, which has a significant component of southern water; (7) evidence that the Northeast Atlantic Deep Water is a mixture of the Mediterranean Outflow Water and the Northwest Atlantic Bottom Water with very little input from the Iceland-Scotland Overflow Water; (8) an isolated core of the high-salinity, low-silica Upper North Atlantic Deep Water at the equator; (9) a core of the high-oxygen, low-nutrient Lower North Atlantic Deep Water pressed against the southern flank of the Mid-Atlantic Ridge just south of the equator; (10) a weak minimum of salinity, and well-defined maxima of nutrients associated with the oxygen minimum that separates the Middle and Lower North Atlantic Deep Waters south of the equator; (11) a large body of nearly homogeneous water beneath the Middle North Atlantic Deep Water between 20-degrees-N and the Azores-Biscay Rise; and (12) a deep westward boundary undercurrent on the southern slope of the Rockall Plateau.

Tsuchiya, M, Talley LD.  1998.  A Pacific hydrographic section at 88 degrees W: Water-property distribution. Journal of Geophysical Research-Oceans. 103:12899-12918.   10.1029/97jc03415   AbstractWebsite

Full-depth conductivity-temperature-depth (CTD)/hydrographic measurements with high horizontal and vertical resolution were made in February-April 1993 along a line lying at a nominal longitude of 88 degrees W and extending from southern Chile (54 degrees S) to Guatemala (14 degrees N). It crossed five major deep basins (Southeast Pacific, Chile, Peru, Panama, and Guatemala basins) east of the East Pacific Rise. Vertical sections of potential temperature, salinity, potential density, oxygen, silica, phosphate, nitrate, and nitrite are presented to illustrate the structure of the entire water column. Some features of interest found in the sections are described, and an attempt is made to interpret them in terms of the isopycnal property distributions associated with the large-scale ocean circulation. These features include: various near-surface waters observed in the tropical and subtropical regions and the fronts that mark the boundaries of these waters; the possible importance of salt fingering to the downward salt transfer from the high-salinity subtropical water; a shallow thermostad (pycnostad) developed at 16 degrees-18.5 degrees C in the subtropical water; low-salinity surface water in the subantarctic zone west of southern Chile; large domains of extremely low oxygen in the subpycnocline layer on both sides of the equator and a secondary nitrite maximum associated with a nitrate minimum in these low-oxygen domains; high-salinity, low-oxygen, high-nutrient subpycnocline water that is carried poleward along the eastern boundary by the Peru-Chile Undercurrent; the Subantarctic Mode and Antarctic Intermediate waters; middepth isopycnal property extrema observed at the crest of the Sala y Gomez Ridge; influences of the North Pacific and the North Atlantic upon deep waters along the section; and the characteristics and sources of the bottom waters in the five deep basins along the section.

Treguier, AM, Theetten S, Chassignet EP, Penduff T, Smith R, Talley L, Beismann JO, Boning C.  2005.  The North Atlantic subpolar gyre in four high-resolution models. Journal of Physical Oceanography. 35:757-774.   10.1175/jpo2720.1   AbstractWebsite

The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10 degrees Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), 1/6 degrees Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv = 10(6) m(3) s(-1)) or more].

Tishchenko, PY, Talley LD, Lobanov VB, Nedashkovskii AP, Pavlova GY, Sagalaev SG.  2007.  The influence of geochemical processes in the near-bottom layer on the hydrochemical characteristics of the waters of the Sea of Japan. Oceanology. 47:350-359.   10.1134/s0001437007030071   AbstractWebsite

According to the results of the international expedition aboard the R/Vs Roger Revelle and Professor Khromov in the summer 1999, areas with low oxygen contents (below 210 mu M/kg) and those with increased contents of dissolved inorganic carbon and phosphates were found that roughly coincided with one another. These areas are located near the bottom on the southwestern slope of the Tsushima Basin in the region of the Korea Strait and on the continental slope in the region of the Tatar Strait in the northern part of the sea at about 46 degrees N. The set of hydrochemical data points to a high geochemical activity in the near-bottom layer of the areas noted. This activity is confirmed by direct observations of the composition of the interstitial water in the sediments collected in the northern part of the sea during the expedition of R/V Akademik M.A. Lavrent'ev in 2003. It was supposed that the main cause of the increased geochemical activity is the runoff of suspended and dissolved matter from the Korea and Tatar straits. In the areas mentioned, the near-bottom waters are characterized by low values of the nitrogen-phosphorus ratio (below 10), which is geochemical proof of the denitrification process occurring under the conditions of high oxygen concentrations characteristic of the Sea of Japan. Based on the value of the annual production in the Sea of Japan, a rate of denitrification equal to 3.4 x 10(12) gN/year was calculated. Hence, it is confirmed that the geochemical processes in the near-bottom layer have a direct influence on the spatiotemporal characteristics of the hydrochemical properties of the waters of the Sea of Japan.

Tishchenko, PY, Talley LD, Nedashkovskii AP, Sagalaev SG, Zvalinskii VI.  2002.  Temporal variability of the hydrochemical properties of the waters of the Sea of Japan. Oceanology. 42:795-803. AbstractWebsite

Hydrochemical studies were performed in the Sea of Japan from onboard R/V Akademik Vinogradov in 1992 and R/Vs Roger Revelle and Professor Khromov in 1999. A comparison of the hydrochemical properties (concentrations of dissolved oxygen and nutrients and proteins of the carbonate system) of the waters of the Sea of Japan with those of the adjacent basins (the Sea of Okhotsk, Pacific Ocean, and East China Sea) demonstrates significant differences between them. In addition, a significant temporal variability of the hydrochemical properties of the intermediate and abyssal waters of the Sea of Japan was revealed. A general increase in the contents of inorganic forms of phosphorus, nitrogen, and normalized organic matter along with a general decrease in the oxygen concentration and normalized alkalinity with time was established. We suggest a model for an open basin, in which the principal reason for the observed features and temporal variability of the hydrochemical properties is related to the water exchange between the Sea of Japan and adjacent basins. A supposition is posed on the strong dependence of the water exchange on the variability of the intensity analysis direction of the major currents of the northwestern Pacific Ocean, especially the Kuroshio Current.

Tishchenko, PY, Talley LD, Lobanov VB, Zhabin IA, Luchm VA, Nedashkovskii AP, Sagalaev SG, Chichkin RV, Shkirnikova EM, Ponomarev VI, Masten D, Kang DJ, Kim KR.  2003.  Seasonal variability of the hydrochemical conditions in the sea of Japan. Oceanology. 43:643-655. AbstractWebsite

In the summer of 1999 and the winter of 2000, during international expeditions of R/Vs Professor Khromov and Roger Revelle, hydrological and hydrochemical studies of the Sea of Japan were performed. Comparing the hydrochemical characteristics of the Sea of Japan in the summer and winter seasons, we have found that the seasonal variability affects not only the upper quasihomogeneous layer but also the deeper layers. This variability is caused by the intensification of vertical mixing during the winter season. It was shown that the mixing intensification in the deep layers of the sea in the winter might be caused both by the slope convection and by the deep convection in the open part of the sea, penetrating deeper than 1000 in. It was found that the area of positive values of the biological constituent of the apparent oxygen consumption coincides with the area of deep convection. The climatic zoning in the distribution of partial pressure of carbon dioxide was revealed for both seasons. In the northwestern part of the sea, carbon dioxide is released into the atmosphere due to the deep convection in the winter and the heating process in the summer. The southern part of the sea absorbs the atmospheric carbon dioxide because of the process of photosynthesis and cooling of the waters supplied from the Korea Strait.

Tamsitt, V, Drake HF, Morrison AK, Talley LD, Dufour CO, Gray AR, Griffies SM, Mazloff MR, Sarmiento JL, Wang J, Weijer W.  2017.  Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nature Communications. 8:172.   10.1038/s41467-017-00197-0   Abstract

Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60–90 years.

Tamsitt, V, Talley LD, Mazloff MR.  2019.  A deep eastern boundary current carrying Indian deep water south of Australia. Journal of Geophysical Research: Oceans. 124:2218-2238.   10.1029/2018jc014569   Abstract

In the Southern Hemisphere, the ocean's deep waters are predominantly transported from low to high latitudes via boundary currents. In addition to the Deep Western Boundary Currents, pathways along the eastern boundaries of the southern Atlantic, Indian, and Pacific transport deep water poleward into the Southern Ocean where these waters upwell to the sea surface. These deep eastern boundary currents and their physical drivers are not well characterized, particularly those carrying carbon and nutrient-rich deep waters from the Indian and Pacific basins. Here we describe the poleward deep eastern boundary current that carries Indian Deep Water along the southern boundary of Australia to the Southern Ocean using a combination of hydrographic observations and Lagrangian experiments in an eddy-permitting ocean state estimate. We find strong evidence for a deep boundary current carrying the low-oxygen, carbon-rich signature of Indian Deep Water extending between 1,500 and 3,000 m along the Australian continental slope, from 30°S to the Antarctic Circumpolar Current southwest of Tasmania. From the Lagrangian particles it is estimated that this pathway transports approximately 5.8 ± 1.3 Sv southward from 30°S to the northern boundary of the Antarctic Circumpolar Current. The volume transport of this pathway is highly variable and is closely correlated with the overlying westward volume transport of the Flinders Current.

Tamsitt, V, Abernathey RP, Mazloff MR, Wang J, Talley LD.  2018.  Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean. Journal of Geophysical Research: Oceans.   10.1002/2017JC013409   AbstractWebsite

Upwelling of northern deep waters in the Southern Ocean is fundamentally important for the closure of the global meridional overturning circulation and delivers carbon and nutrient‐rich deep waters to the sea surface. We quantify water mass transformation along upwelling pathways originating in the Atlantic, Indian, and Pacific and ending at the surface of the Southern Ocean using Lagrangian trajectories in an eddy‐permitting ocean state estimate. Recent related work shows that upwelling in the interior below about 400 m depth is localized at hot spots associated with major topographic features in the path of the Antarctic Circumpolar Current, while upwelling through the surface layer is more broadly distributed. In the ocean interior upwelling is largely isopycnal; Atlantic and to a lesser extent Indian Deep Waters cool and freshen while Pacific deep waters are more stable, leading to a homogenization of water mass properties. As upwelling water approaches the mixed layer, there is net strong transformation toward lighter densities due to mixing of freshwater, but there is a divergence in the density distribution as Upper Circumpolar Deep Water tends become lighter and dense Lower Circumpolar Deep Water tends to become denser. The spatial distribution of transformation shows more rapid transformation at eddy hot spots associated with major topography where density gradients are enhanced; however, the majority of cumulative density change along trajectories is achieved by background mixing. We compare the Lagrangian analysis to diagnosed Eulerian water mass transformation to attribute the mechanisms leading to the observed transformation.

Tamsitt, V, Talley LD, Mazloff MR, Cerovecki I.  2016.  Zonal variations in the Southern Ocean heat budget. Journal of Climate. 29:6563-6579.   10.1175/JCLI-D-15-0630.1   AbstractWebsite

The spatial structure of the upper ocean heat budget in the Antarctic Circumpolar Current (ACC) is investigated using the ⅙°, data-assimilating Southern Ocean State Estimate (SOSE) for 2005–10. The ACC circumpolar integrated budget shows that 0.27 PW of ocean heat gain from the atmosphere and 0.38 PW heat gain from divergence of geostrophic heat transport are balanced by −0.58 PW cooling by divergence of Ekman heat transport and −0.09 PW divergence of vertical heat transport. However, this circumpolar integrated balance obscures important zonal variations in the heat budget. The air–sea heat flux shows a zonally asymmetric pattern of ocean heat gain in the Indian and Atlantic sectors and ocean heat loss in the Pacific sector of the ACC. In the Atlantic and Indian sectors of the ACC, the surface ocean heat gain is primarily balanced by divergence of equatorward Ekman heat transport that cools the upper ocean. In the Pacific sector, surface ocean heat loss and cooling due to divergence of Ekman heat transport are balanced by warming due to divergence of geostrophic heat advection, which is similar to the dominant heat balance in the subtropical Agulhas Return Current. The divergence of horizontal and vertical eddy advection of heat is important for warming the upper ocean close to major topographic features, while the divergence of mean vertical heat advection is a weak cooling term. The results herein show that topographic steering and zonal asymmetry in air–sea exchange lead to substantial zonal asymmetries in the heat budget, which is important for understanding the upper cell of the overturning circulation.

Talley, LD, Rosso I, Kamenkovich I, Mazloff MR, Wang J, Boss E, Gray AR, Johnson KS, Key R, Riser SC, Williams NL, Sarmiento JL.  2018.  Southern Ocean biogeochemical float deployment strategy, with example from the Greenwich Meridian line (GO-SHIP A12). Journal of Geophysical Research: Oceans.   10.1029/2018JC014059   Abstract

Biogeochemical Argo floats, profiling to 2000 m depth, are being deployed throughout the Southern Ocean by the Southern Ocean Carbon and Climate Observations and Modeling program (SOCCOM). The goal is 200 floats by 2020, to provide the first full set of annual cycles of carbon, oxygen, nitrate and optical properties across multiple oceanographic regimes. Building from no prior coverage to a sparse array, deployments are based on prior knowledge of water mass properties, mean frontal locations, mean circulation and eddy variability, winds, air-sea heat/freshwater/carbon exchange, prior Argo trajectories, and float simulations in the Southern Ocean State Estimate (SOSE) and Hybrid Coordinate Ocean Model (HYCOM). Twelve floats deployed from the 2014-2015 Polarstern cruise from South Africa to Antarctica are used as a test case to evaluate the deployment strategy adopted for SOCCOM's 20 deployment cruises and 126 floats to date. After several years, these floats continue to represent the deployment zones targeted in advance: (1) Weddell Gyre sea ice zone, including the Antarctic Slope Front, Maud Rise, and the open gyre; (2) Antarctic Circumpolar Current (ACC) including the topographically-steered Southern zone ‘chimney' where upwelling carbon/nutrient-rich deep waters produce surprisingly large carbon dioxide outgassing; (3) Subantarctic and Subtropical zones between the ACC and Africa; and (4) Cape Basin. Argo floats and eddy-resolving HYCOM simulations were the best predictors of individual SOCCOM float pathways, with uncertainty after 2 years on the order of 1000 km in the sea ice zone and more than double that in and north of the ACC.

Talley, LD.  2008.  Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Progress in Oceanography. 78:257-303.   10.1016/j.pocean.2008.05.001   AbstractWebsite

Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions: 1. Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 +/- 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 +/- 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 +/- 0.02 Sv of freshwater equatorward. In complete contrast, almost all of the 0.61 +/- 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0. 1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 +/- 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (-0.06 +/- 0.04 Sv). This northern-southern hemisphere asymmetry is likely a consequence of the "Drake Passage" effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research 1 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters. 2. The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32 degrees S, freshwater import (0.28 +/- 0.04 Sv) comes from the Pacific through Bering Strait (0.06 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 +/- 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 0.02 Sv): from saline Benguela Current surface water (-0.05 +/- 0.01 Sv), fresh AAIW (0.06 0.01 Sv) and fresh AABW/LCDW (0.01 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget. For the Indian Ocean north of 32 degrees S, import of the required 0.37 +/- 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 +/- 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 +/- 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (-0.04 +/- 0.03 Sv). The Pacific north of 28 degrees S is essentially neutral with respect to freshwater, -0.04 +/- 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (-0.07 +/- 0.02 Sv), export to the Indian through the Indonesian Throughflow (-0.17 +/- 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (-0.03 +/- 0.03 Sv), and import of 0.23 +/- 0.04 Sv from the Southern Ocean via the shallow gyre circulation. 3. Bering Strait's small freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity. (C) 2008 Elsevier Ltd. All rights reserved.

Talley, LD.  1985.  Ventilation of the Sub-Tropical North Pacific - the Shallow Salinity Minimum. Journal of Physical Oceanography. 15:633-649.   10.1175/1520-0485(1985)015<0633:votsnp>2.0.co;2   AbstractWebsite

The shallow salinity minimum of the subtropical North Pacific is shown to be a feature of the ventilated, wind-driven circulation. Subduction of low salinity surface water in the northeastern subtropical gyre beneath higher salinity water to the south causes the salinity minimum. Variation of salinity along surface isopycnals causes variations in density and salinity at the minimum.A model of ventilated flow is used to demonstrate how the shallow salinity minimum can arise. The model is modified to account for nonzonal, realistic winds; it is also extended to examine the three-dimensional structure of the western shadow zone. The boundary between the subtropical and subpolar gyres is given by the zero of the zonal integral of Ekman pumping. The western shadow zone fills the subtropical gyre at the base of the ventilated layers and decreases in extent with decreasing density. For parameters appropriate to the North Pacific, the eastern shadow zone is of very limited extent.Observations of salinity and potential vorticity within and below the ventilated layer bear out model predictions of the extent of the western shadow zone.

Talley, LD.  2003.  Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography. 33:530-560.   10.1175/1520-0485(2003)033<0530:siadoc>2.0.co;2   AbstractWebsite

The ocean's overturning circulation and associated heat transport are divided into contributions based on water mass ventilation from 1) shallow overturning within the wind-driven subtropical gyres to the base of the thermocline, 2) overturning into the intermediate depth layer (500-2000 m) in the North Atlantic and North Pacific, and 3) overturning into the deep layers in the North Atlantic (Nordic Seas overflows) and around Antarctica. The contribution to South Pacific and Indian heat transport from the Indonesian Throughflow is separated from that of the subtropical gyres and is small. A shallow overturning heat transport of 0.6 PW dominates the 0.8-PW total heat transport at 24degreesN in the North Pacific but carries only 0.1-0.4 PW of the 1.3-PW total in the North Atlantic at 24degreesN. Shallow overturning heat transports in the Southern Hemisphere are also poleward: -0.2 to -0.3 PW southward across 30degreesS in each of the Pacific and Indian Oceans but only -0.1 PW in the South Atlantic. Intermediate water formation of 2 and 7 Sv (1 Sv = 10(6) m(3) s(-1)) carries 0.1 and 0.4 PW in the North Pacific and Atlantic, respectively, while North Atlantic Deep Water formation of 19 Sv carries 0.6 PW. Because of the small temperature differences between Northern Hemisphere deep waters that feed the colder Antarctic Bottom Water (Lower Circumpolar Deep Water), the formation of 22 Sv of dense Antarctic waters is associated with a heat transport of only -0.14 PW across 30degreesS (all oceans combined). Upwelling of Circumpolar Deep Water north of 30degreesS in the Indian (14 Sv) and South Pacific (14 Sv) carries -0.2 PW in each ocean.

Talley, LD.  2013.  Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Volume 4: Indian Ocean. ( and M. Sparrow CPJ, Ed.)., Southampton, U.K.: International WOCE Project Office
Talley, LD, Min DH, Lobanov VB, Luchin VA, Ponomarev VI, Salyuk AN, Shcherbina AY, Tishchenko PY, Zhabin I.  2006.  Japan/East Sea water masses and their relation to the sea's circulation. Oceanography. 19:32-49.   10.5670/oceanog.2006.42   Abstract

The Japan/East Sea is a major anomaly in the ventilation and overturn picture of the Pacific Ocean. The North Pacific is well known to be nearly unventilated at intermediate and abyssal depths, reflected in low oxygen concentration at 1000 m (Figure 1). (High oxygen indicates newer water in more recent contact with the atmosphere. Oxygen declines as water "ages" after it leaves the sea surface mainly because of bacterial respiration.) Even the small production of North Pacific Intermediate Water in the Okhotsk Sea (Talley, 1991; Shcherbina et al., 2003) and the tiny amount of new bottom water encountered in the deep Bering Sea (Warner and Roden, 1995) have no obvious impact on the overall oxygen distribution at 1000 m and below, down to 3500 m, which is the approximate maximum depth of the Bering, Okhotsk, and Japan/East Seas.

Talley, LD.  1983.  Radiating Barotropic Instability. Journal of Physical Oceanography. 13:972-987.   10.1175/1520-0485(1983)013<0972:rbi>2.0.co;2   AbstractWebsite

The linear stability of zonal, parallel shear flow on a beta-plane is discussed. While the localized shear region supports unstable waves, the far-field can support Rossby waves because of the ambient potential-vorticity gradient. An infinite zonal flow with a continuous cross-stream velocity gradient is approximated with segments of uniform flow, joined together by segments of uniform potential vorticity. This simplification allows an exact dispersion relation to be found. There are two classes of linearly unstable solutions. One type is trapped to the source of energy and has large growth rates. The second type is weaker instabilities which excite Rossby waves in the far-field: the influence of these weaker instabilities extends far beyond that of the most unstable waves.

Talley, LD, Stammer D, Fukumori I.  2001.  The WOCE Synthesis. Ocean circulation and climate : observing and modelling the global ocean. ( Siedler G, Church J, Gould WJ, Eds.).:525-546., San Diego, Calif. London: Academic Abstract
n/a
Talley, LD.  1996.  North Atlantic circulation and variability, reviewed for the CNLS conference. Physica D. 98:625-646.   10.1016/0167-2789(96)00123-6   AbstractWebsite

The circulation and water mass structure of the North Atlantic are reviewed, with emphasis on the large-scale overturning cell which produces North Atlantic Deep Water (NADW). Properties and transports for its major components (Nordic Seas Overflow Water, Labrador Sea Water, Mediterranean Water, Antarctic Intermediate Water and Antarctic Bottom Water) are reviewed. The transport estimates and properties of NADW coupled with the observed meridional heat transport in the Atlantic limit the temperature of northward flow which replenishes the NADW to the range 11-15 degrees C. The high salinity of the North Atlantic compared with other ocean basins is important for its production of intermediate and deep waters; about one third of its higher evaporation compared with the North Pacific is due to the Mediterranean. The evaporation/precipitation balance for the North Atlantic is similar to the Indian and South Atlantic Oceans; the difference between the North and South Atlantic may be that high evaporation in the North Atlantic affects much greater depths through Mediterranean Water production. Also described briefly is variability of water properties in the upper layers of the subtropical/subpolar North Atlantic, as linked to the North Atlantic Oscillation. The oceanographic time series at Bermuda is then used to show decadal variations in the properties of the Subtropical Mode Water, a thick layer which lies in the upper 500 m. Salinity of this layer and at the sea surface increases during periods when the North Atlantic westerlies weaken between Iceland and the Azores and shift southwestward. (The North Atlantic Oscillation index is low during these periods). Temperature at the surface and in this layer are slightly negatively correlated with salinity, decreasing when salinity increases. It is hypothesized that the salinity increases result from incursion of saline water from the eastern subtropical gyre forced by the southward migration of the westerlies, and that the small temperature decreases are due to increased convection in the Sargasso Sea, also resulting from the southward shift of the westerlies.

Talley, LD, Fryer G, Lumpkin R.  2013.  Oceanography. The Pacific Islands: Environment and Society. ( Rapaport M, Ed.)., Honolulu: University of Hawai'i Press
Talley, LD.  1991.  An Okhotsk Sea-Water Anomaly - Implications for Ventilation in the North Pacific. Deep-Sea Research Part a-Oceanographic Research Papers. 38:S171-S190.   10.1016/S0198-0149(12)80009-4   AbstractWebsite

An unusually cold, fresh and oxygenated layer of water centered at a pressure of 800 dbar and sigma-theta of 27.4 was found at a CTD station in the western Pacific at 43-degrees-5'N, 153-degrees-20'E in August 1985. The anomaly was part of a larger pattern of less dramatic but nevertheless higher variance at densities up to 27.6-sigma-theta in the mixed water region of the Oyashio and Kuroshio, south of the Bussol' Strait, which connects the Sea of Okhotsk and the open North Pacific. Isopycnal maps indicate that the source of the anomaly, which was embedded in a cyclonic flow, was the Okhotsk Sea. Surface properties in the Okhotsk Sea, based on all available NODC observations, and isopycnal maps indicate that the layer probably did not originate at the sea surface in open water. Instead, the principal modifying influences at densities of 26.8-27.6-sigma-theta in the North Pacific are sea-ice formation and vertical mixing, the latter primarily in the Kuril Straits. A simple calculation shows that most of the low salinity influence at these densities in the North Pacific can originate in the Okhotsk Sea and that vertical mixing in the open North Pacific may be much less important than previously thought.

Talley, LD, Tishchenko P, Luchin V, Nedashkovskiy A, Sagalaev S, Kang DJ, Warner M, Min DH.  2004.  Atlas of Japan (East) Sea hydrographic properties in summer, 1999. Progress in Oceanography. 61:277-348.   10.1016/j.pocean.2004.06.011   AbstractWebsite

Hydrographic properties from CTD and discrete bottle sample profiles covering the Japan (East) Sea in summer, 1999, are presented in vertical sections, maps at standard depths, maps on isopycnal surfaces, and as property-property distributions. This data set covers most of the Sea with the exception of the western boundary region and northern Tatar Strait, and includes nutrients, pH, alkalinity, and chlorofluorocarbons, as well as the usual temperature, salinity, and oxygen observations. (C) 2004 Elsevier Ltd. All rights reserved.

Talley, LD, Rosso I, Kamenkovich I, Mazloff MR, Wang J, Boss E, Gray AR, Johnson KS, Key RM, Riser SC, Williams NL, Sarmiento JL.  2019.  Southern Ocean biogeochemical float deployment strategy, with example from the Greenwich meridian line (GO-SHIP A12). Journal of Geophysical Research-Oceans. 124:403-431.   10.1029/2018jc014059   AbstractWebsite

Biogeochemical Argo floats, profiling to 2,000-m depth, are being deployed throughout the Southern Ocean by the Southern Ocean Carbon and Climate Observations and Modeling program (SOCCOM). The goal is 200 floats by 2020, to provide the first full set of annual cycles of carbon, oxygen, nitrate, and optical properties across multiple oceanographic regimes. Building from no prior coverage to a sparse array, deployments are based on prior knowledge of water mass properties, mean frontal locations, mean circulation and eddy variability, winds, air-sea heat/freshwater/carbon exchange, prior Argo trajectories, and float simulations in the Southern Ocean State Estimate and Hybrid Coordinate Ocean Model (HYCOM). Twelve floats deployed from the 2014-2015 Polarstern cruise from South Africa to Antarctica are used as a test case to evaluate the deployment strategy adopted for SOCCOM's 20 deployment cruises and 126 floats to date. After several years, these floats continue to represent the deployment zones targeted in advance: (1) Weddell Gyre sea ice zone, observing the Antarctic Slope Front, and a decadally-rare polynya over Maud Rise; (2) Antarctic Circumpolar Current (ACC) including the topographically steered Southern Zone chimney where upwelling carbon/nutrient-rich deep waters produce surprisingly large carbon dioxide outgassing; (3) Subantarctic and Subtropical zones between the ACC and Africa; and (4) Cape Basin. Argo floats and eddy-resolving HYCOM simulations were the best predictors of individual SOCCOM float pathways, with uncertainty after 2years of order 1,000km in the sea ice zone and more than double that in and north of the ACC.