Publications with links

Export 55 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Talley, LD, Nagata Y.  1995.  PICES Working Group I: Review of the Okhotsk Sea and Oyashio Region. PICES Scientific Report. 2:227.: North Pacific Marine Science Organization (PICES) Abstract
n/a
Talley, LD, Pickard GL, Emery WJ, Swift JH.  2011.  Descriptive physical oceanography : an introduction. :viii,555p.,60p.ofplates., Amsterdam ; Boston: Academic Press Abstract

n/a

Talley, LD, White WB.  1987.  Estimates of Time and Space Scales at 300-Meters in the Midlatitude North Pacific from the Transpac-Xbt Program. Journal of Physical Oceanography. 17:2168-2188.   10.1175/1520-0485(1987)017<2168:eotass>2.0.co;2   AbstractWebsite

Estimates of length and time scales of temperature variability at 300 meters in the midlatitude North Pacific are made. Data are XBT traces collected from 1976 to 1984 in the TRANSPAC Volunteer Observing Ship program. Temperatures at 300 meters are grouped in two-mouth bins and gridded using the Surface II mapping program.Temperature variance about the time mean is largest in the Kuroshio Extension and nearly constant in the eastern North Pacific. A cooling trend occurred in the eastern North Pacific over the eight years of the dataset. In the western Pacific, the annual cycle is most intense 1°–2° north of the Kuroshio Extension, with an indication of meridional propagation away from the region of most intense variability. Propagation of annual waves in the eastern Pacific was predominantly northwestward.Wavenumber and frequency spectra are computed from normalized temperatures with the mean and bimonthly average removed in order to eliminate the dominant annual cycle. Based on the overall temperature variance, the North Pacific was divided into western and eastern regions. Zonal wavenumber and frequency spectra and two-dimensional ω/k spectra were computed for a number of latitudes in the eastern and western regions. Two-dimensional k/l spectra were also computed for the western and eastern regions. The spectra indicate westward propagation throughout the midlatitude North Pacific with additional eastward propagation in the Kuroshio Extension region, shorter length and time scales in the Kuroshio Extension compared with other regions, and slight dominance of southwestward propagation in bath the eastern and western North Pacific.Tests to determine the effective spatial resolution of the dataset indicate that local average-station spacing is a good measure of local Nyquist wavelength. However, because of the nearly random sampling in a spatially limited region, an unresolved wave is aliased more or less in a band stretching towards low wavenumber rather than folded in coherent, predictable locations in the spectrum. With the choice of a two-month time bin, spectra are about equally aliased in space and time, with Nyquist wavelength and period close to the beginning of energy rolloff reported in other surveys, which have better spatial resolution but less degrees of freedom.

Talley, LD, Reid JL, Robbins PE.  2003.  Data-based meridional overturning streamfunctions for the global ocean. Journal of Climate. 16:3213-3226.   10.1175/1520-0442(2003)016<3213:dmosft>2.0.co;2   AbstractWebsite

The meridional overturning circulation for the Atlantic, Pacific, and Indian Oceans is computed from absolute geostrophic velocity estimates based on hydrographic data and from climatological Ekman transports. The Atlantic overturn includes the expected North Atlantic Deep Water formation ( including Labrador Sea Water and Nordic Sea Overflow Water), with an amplitude of about 18 Sv through most of the Atlantic and an error of the order of 3 - 5 Sv (1 Sv = 10(6) m(3) s(-1)). The Lower Circumpolar Deep Water ( Antarctic Bottom Water) flows north with about 8 Sv of upwelling and a southward return in the South Atlantic, and 6 Sv extending to and upwelling in the North Atlantic. The northward flow of 8 Sv in the upper layer in the Atlantic ( sea surface through the Antarctic Intermediate Water) is transformed to lower density in the Tropics before losing buoyancy in the Gulf Stream and North Atlantic Current. The Pacific overturning streamfunction includes 10 Sv of Lower Circumpolar Deep Water flowing north into the South Pacific to upwell and return southward as Pacific Deep Water, and a North Pacific Intermediate Water cell of 2 Sv. The northern North Pacific has no active deep water formation at the sea surface, but in this analysis there is downwelling from the Antarctic Intermediate Water into the Pacific Deep Water, with upwelling in the Tropics. For global Southern Hemisphere overturn across 30degreesS, the overturning is separated into a deep and a shallow overturning cell. In the deep cell, 22 - 27 Sv of deep water flows southward and returns northward as bottom water. In the shallow cell, 9 Sv flows southward at low density and returns northward just above the intermediate water density. In all three oceans, the Tropics appear to dominate upwelling across isopycnals, including the migration of the deepest waters upward to the thermocline in the Indian and Pacific. Estimated diffusivities associated with this tropical upwelling are the same order of magnitude in all three oceans. It is shown that vertically varying diffusivity associated with topography can produce deep downwelling in the absence of external buoyancy loss. The rate of such downwelling for the northern North Pacific is estimated as 2 Sv at most, which is smaller than the questionable downwelling derived from the velocity analysis.

Talley, LD, Baringer MO.  1997.  Preliminary results from WOCE hydrographic sections at 80 degrees E and 32 degrees S in the central Indian Ocean. Geophysical Research Letters. 24:2789-2792.   10.1029/97gl02657   AbstractWebsite

The hydrographic properties and circulation along sections at 80 degrees E and 32 degrees S in March, 1995, in the Indian Ocean are described very briefly. A halocline was well-developed in the tropics. A westward coastal jet of fresh Bay of Bengal water was present at the sea surface at Sri Lanka with eastward flow of saline Arabian Sea water below. The Equatorial Undercurrent was well developed as were the deep equatorial jets. The Indonesian throughflow jet presented a large dynamic signature at 10 to 14 degrees S coinciding with a strong front in all properties to great depth. Its mid-depth salinity minimum is separated from that of the Antarctic Intermediate Water. The Subantarctic Mode Water of the southeastern Indian Ocean imparts its high oxygen ventilation signature to the whole of the transects, including the tropical portion. The deepest water in the Central Indian Basin is pooled in the center of the basin, and its principal source appears to be the sill at 11 degrees S through the Ninetyeast Ridge. Northward deep water transports across the 32 degrees S section were similar to those observed in 1987 but the deep water was lower in oxygen and fresher than in 1987. Upper ocean waters at 32 degrees S were more saline and warmer in 1995.

Talley, LD, Johnson GC.  1994.  Deep, Zonal Subequatorial Currents. Science. 263:1125-1128.   10.1126/science.263.5150.1125   AbstractWebsite

Large-scale, westward-extending tongues of warm (Pacific) and cold (Atlantic) water are found between 2000 and 3000 meters both north and south of the equator in the Pacific and Atlantic oceans. They are centered at 5-degrees to 8-degrees north and 10-degrees to 15-degrees south (Pacific) and 5-degrees to 8-degrees north and 15-degrees to 20-degrees south (Atlantic). They are separated in both oceans by a contrasting eastward-extending tongue, centered at about 1-degrees to 2-degrees south, in agreement with previous helium isotope observations (Pacific). Thus, the indicated deep tropical westward flows north and south of the equator and eastward flow near the equator may result from more general forcing than the hydrothermal forcing previously hypothesized.

Talley, LD.  1984.  Meridional Heat-Transport in the Pacific-Ocean. Journal of Physical Oceanography. 14:231-241.   10.1175/1520-0485(1984)014<0231:mhtitp>2.0.co;2   AbstractWebsite

The heat transported meridionally in the Pacific Ocean is calculated from the surface heat budgets of Clark and Weare and others; both budgets were based on Bunker's method with different radiation formulas. The meridional heat transport is also calculated from the surface heat budget of Esbensen and Kushnir, who used Budyko's method. The heat transport is southward at most latitudes if the numbers of Clark and of Weare are used. It is northward in the North Pacific and southward in the South Pacific if Eshensen and Kushnir's numbers are used. Systematic errors in both calculations appear to be so large that confident determination of even the sign of the heat transport in the North Pacific is not possible. The amount of heat transported poleward by all oceans is obtained from the Pacific Ocean calculation and transports in the Atlantic and Indian Oceans based on Bunker's surface heat fluxes.

Talley, LD.  1996.  Physical oceanography. Encylopedia of Earth Sciences. :745-749., New York: MacMillan Publishing Abstract
n/a
Talley, LD, Joyce TM.  1992.  The Double Silica Maximum in the North Pacific. Journal of Geophysical Research-Oceans. 97:5465-5480.   10.1029/92jc00037   AbstractWebsite

The North Pacific has two vertical silica maxima. The well-known intermediate maximum occurs between 2000 and 2500 m with a potential density relative to 2000 dbar of 36.90 in the northeastern Pacific. The deep maximum, which has not been observed extensively before, is found at or near the ocean bottom in the northern North Pacific in a narrow latitude range. Maps of silica on isopycnals which intersect the intermediate and bottom maxima show that the lowest silica is found in the western tropical North Pacific, suggesting a route for the spread of South Pacific water into the deep North Pacific. Low-silica water is found along the western boundary of the North Pacific, with a separate broad tongue south of Hawaii. The highest silica on both isopycnals is in the northeast Pacific. A bottom maximum in the Cascadia Basin in the northeastern Pacific can be differentiated from both open-ocean maxima. Four sources for the vertical maxima are considered: in situ dissolution of sinking panicles, bottom sediment dissolution, hydrothermal venting, and upslope advection in the northeastern Pacific. Because not enough is known about any of these sources, only rough estimates of their contributions can be made. The bottom maximum is most likely to result from bottom sediment dissolution but requires a flux larger than some current direct estimates. The Cascadia Basin bottom maximum may result from both bottom sediment dissolution and hydrothermal venting. The intermediate maximum is likely to result primarily from dissolution of sinking particles. There is no quantitative estimate of the effect of possible upslope advection or enhancement of bottom fluxes due to the Columbia River outflow.

Talley, LD, Raymer ME.  1982.  Eighteen Degree Water variability. Journal of Marine Research. 40:757-775. AbstractWebsite

The Eighteen Degree Water of the western North Atlantic is formed by deep convection in winter. The circulation and changing properties of Eighteen Degree Water are studied using hydrographic data from a long time series at the Panulirus station (32 degrees 10'N, 64 degrees 30'W) and from the Gulf Stream '60 experiment. Due to its relative vertical homogeneity, which persists year-round, the Eighteen Degree Water can be identified by its low potential vorticity (f/rho)(partial derivative rho/partial derivative z). The Eighteen Degree Water is formed in an east-west band of varying characteristics offshore of the Gulf Stream. The Eighteen Degree Water formed at the eastern end of the subtropical gyre recirculates westward past the Panulirus station. Renewal of Eighteen Degree Water occurred regularly from 1954 to 1971, ceased from 1972 to 1975, and began again after 1975. The properties (18 degrees C, 36.5 parts per thousand) of Eighteen Degree Water seen at the Panulirus station were nearly uniform from 1954 to 1964. There was a shift in properties in 1964 and by 1972 the Eighteen Degree Water properties were 17.1 degrees C, 36.4 parts per thousand, The new Eighteen Degree Water formed after 1975 had nearly the same characteristics as that of 1954. The density, potential temperature, salinity and the temperature-salinity relation of the entire upper water column at the Panulirus station changed at the same time as the Eighteen Degree Water properties. The upper water column was denser and colder from 1964 to 1975 than from 1954 to 1964 and after 1975.

Talley, LD.  1999.  Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of global climate change at millennial time scales. ( Clark PU, Webb RS, Keigwin LD, Eds.).:1-22., Washington, DC: American Geophysical Union Abstract
n/a
Talley, LD, Nagata Y, Fujimura M, Iwao T, Kono T, Inagake D, Hirai M, Okuda K.  1995.  North Pacific Intermediate Water in the Kuroshio Oyashio Mixed Water Region. Journal of Physical Oceanography. 25:475-501.   10.1175/1520-0485(1995)025<0475:npiwit>2.0.co;2   AbstractWebsite

The North Pacific Intermediate Water (NPIW) orginates as a vertical salinity minimum in the mixed water region (MWR) between the Kuroshio and Oyashio, just east of Japan. Salinity minima in this region are examined and related to the water mass structures, dynamical features, and winter mixed layer density of waters of Oyashio origin. Stations in the MWR are divided into five regimes, of which three represent source waters (from the Kuroshio, Oyashio, and Tsugaru Current) and two are mixed waters formed from these three inputs. Examination of NPIW at stations just east of the MWR indicates that the mixed waters in the MWR are the origin of the newest NPIW. Multiple salinity minima with much finestructure are seen throughout the MWR in spring 1989, with the most fragmented occurring around the large warm core ring centered at 37 degrees N, 144 degrees E, suggesting that this is a dominant site for salinity minimum formation. The density of the NPIW in the MWR is slightly higher than the apparent late winter surface density of the subpolar water. It is hypothesized that the vertical mixing that creates interfacial layers above the salinity minima also increases the density of the minima to the observed NPIW density. Transport of new intermediate water (26.65-27.4 sigma(theta)) eastward out of the MWR is about 6 Sv (Sv = 10(6)m(3)s(-1)), of which roughly 45% is of Oyashio origin and the other 55% of Kuroshio origin. Therefore, the transport of subpolar water into the subtropical gyre in the western North Pacific is estimated to be about 3 Sv.

Talley, LD.  2013.  Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports. Oceanography. 26:80-97. AbstractWebsite

The overturning pathways for the surface-ventilated North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) and the diffusively formed Indian Deep Water (IDW) and Pacific Deep Water (PDW) are intertwined. The global overturning circulation (GOC) includes both large wind-driven upwelling in the Southern Ocean and important internal diapycnal transformation in the deep Indian and Pacific Oceans. All three northern-source Deep Waters (NADW, IDW, PDW) move southward and upwell in the Southern Ocean. AABW is produced from the denser, salty NADW and a portion of the lighter, low oxygen IDW/PDW that upwells above and north of NADW. The remaining upwelled IDW/PDW stays near the surface, moving into the subtropical thermoclines, and ultimately sources about one-third of the NADW. Another third of the NADW comes from AABW upwelling in the Atlantic. The remaining third comes from AABW upwelling to the thermocline in the Indian-Pacific. Atlantic cooling associated with NADW formation (0.3 PW north of 32 degrees S; 1 PW = 1015 W) and Southern Ocean cooling associated with AABW formation (0.4 PW south of 32 degrees S) are balanced mostly by 0.6 PW of deep diffusive heating in the Indian and Pacific Oceans; only 0.1 PW is gained at the surface in the Southern Ocean. Thus, while an adiabatic model of NADW global overturning driven by winds in the Southern Ocean, with buoyancy added only at the surface in the Southern Ocean, is a useful dynamical idealization, the associated heat changes require full participation of the diffusive Indian and Pacific Oceans, with a basin-averaged diffusivity on the order of the Munk value of 10(-4) m(2) s(-1).

Talley, LD.  1988.  Potential Vorticity Distribution in the North Pacific. Journal of Physical Oceanography. 18:89-106.   10.1175/1520-0485(1988)018<0089:pvditn>2.0.co;2   AbstractWebsite

Vertical sections and maps of potential vorticity ρ−1f∂ρ/∂z for the North Pacific are presented. On shallow isopycnals, high potential vorticity is found in the tropics, subpolar gyre, and along the eastern boundary of the subtropical gyre, all associated with Ekman upwelling. Low potential vorticity is found in the western subtropical gyre (subtropical mode water), in a separate patch near the sea surface in the eastern subtropical gyre and extending around the gyre, and near sea-surface outcrops in the subpolar gyre; the last is analogous to the subpolar mode water of the North Atlantic and Southern Ocean.Meridional gradients of potential vorticity are high between the subtropical and subpolar gyres at densities which outcrop only in the subpolar gyre; lateral gradients of potential vorticity are low in large regions of the subtropical gyre on these isopycnals. On slightly denser isopycnals which do not outcrop in the North Pacific, there are large regions of low potential vorticity gradients which cross the subtropical-subpolar gyre boundary. These regions decrease in area with depth and vanish between 2500 and 3000 meters. Regions of low lateral gradients of potential vorticity are surrounded by and overlie regions where the meridional gradient of potential vorticity is approximately β. In the abyssal waters, below 3500 meters, meridional potential vorticity gradients again decrease, perhaps associated with slow geothermal heating. The depth and shape of the region wheel potential vorticity is relatively uniform or possesses closed contours is noted and related to theories of wind-driven circulation.

Talley, LD, Fryer G, Lumpkin R.  1998.  Physical oceanography of the tropical Pacific. Geography of the Pacific Islands. ( Rapaport M, Ed.).:19-32., Honolulu: Bess Press Abstract
n/a
Talley, LD, Rosso I, Kamenkovich I, Mazloff MR, Wang J, Boss E, Gray AR, Johnson KS, Key R, Riser SC, Williams NL, Sarmiento JL.  2018.  Southern Ocean biogeochemical float deployment strategy, with example from the Greenwich Meridian line (GO-SHIP A12). Journal of Geophysical Research: Oceans.   10.1029/2018JC014059   Abstract

Biogeochemical Argo floats, profiling to 2000 m depth, are being deployed throughout the Southern Ocean by the Southern Ocean Carbon and Climate Observations and Modeling program (SOCCOM). The goal is 200 floats by 2020, to provide the first full set of annual cycles of carbon, oxygen, nitrate and optical properties across multiple oceanographic regimes. Building from no prior coverage to a sparse array, deployments are based on prior knowledge of water mass properties, mean frontal locations, mean circulation and eddy variability, winds, air-sea heat/freshwater/carbon exchange, prior Argo trajectories, and float simulations in the Southern Ocean State Estimate (SOSE) and Hybrid Coordinate Ocean Model (HYCOM). Twelve floats deployed from the 2014-2015 Polarstern cruise from South Africa to Antarctica are used as a test case to evaluate the deployment strategy adopted for SOCCOM's 20 deployment cruises and 126 floats to date. After several years, these floats continue to represent the deployment zones targeted in advance: (1) Weddell Gyre sea ice zone, including the Antarctic Slope Front, Maud Rise, and the open gyre; (2) Antarctic Circumpolar Current (ACC) including the topographically-steered Southern zone ‘chimney' where upwelling carbon/nutrient-rich deep waters produce surprisingly large carbon dioxide outgassing; (3) Subantarctic and Subtropical zones between the ACC and Africa; and (4) Cape Basin. Argo floats and eddy-resolving HYCOM simulations were the best predictors of individual SOCCOM float pathways, with uncertainty after 2 years on the order of 1000 km in the sea ice zone and more than double that in and north of the ACC.

Talley, LD.  2008.  Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Progress in Oceanography. 78:257-303.   10.1016/j.pocean.2008.05.001   AbstractWebsite

Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions: 1. Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 +/- 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 +/- 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 +/- 0.02 Sv of freshwater equatorward. In complete contrast, almost all of the 0.61 +/- 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0. 1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 +/- 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (-0.06 +/- 0.04 Sv). This northern-southern hemisphere asymmetry is likely a consequence of the "Drake Passage" effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research 1 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters. 2. The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32 degrees S, freshwater import (0.28 +/- 0.04 Sv) comes from the Pacific through Bering Strait (0.06 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 +/- 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 0.02 Sv): from saline Benguela Current surface water (-0.05 +/- 0.01 Sv), fresh AAIW (0.06 0.01 Sv) and fresh AABW/LCDW (0.01 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget. For the Indian Ocean north of 32 degrees S, import of the required 0.37 +/- 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 +/- 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 +/- 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (-0.04 +/- 0.03 Sv). The Pacific north of 28 degrees S is essentially neutral with respect to freshwater, -0.04 +/- 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (-0.07 +/- 0.02 Sv), export to the Indian through the Indonesian Throughflow (-0.17 +/- 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (-0.03 +/- 0.03 Sv), and import of 0.23 +/- 0.04 Sv from the Southern Ocean via the shallow gyre circulation. 3. Bering Strait's small freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity. (C) 2008 Elsevier Ltd. All rights reserved.

Talley, LD.  1985.  Ventilation of the Sub-Tropical North Pacific - the Shallow Salinity Minimum. Journal of Physical Oceanography. 15:633-649.   10.1175/1520-0485(1985)015<0633:votsnp>2.0.co;2   AbstractWebsite

The shallow salinity minimum of the subtropical North Pacific is shown to be a feature of the ventilated, wind-driven circulation. Subduction of low salinity surface water in the northeastern subtropical gyre beneath higher salinity water to the south causes the salinity minimum. Variation of salinity along surface isopycnals causes variations in density and salinity at the minimum.A model of ventilated flow is used to demonstrate how the shallow salinity minimum can arise. The model is modified to account for nonzonal, realistic winds; it is also extended to examine the three-dimensional structure of the western shadow zone. The boundary between the subtropical and subpolar gyres is given by the zero of the zonal integral of Ekman pumping. The western shadow zone fills the subtropical gyre at the base of the ventilated layers and decreases in extent with decreasing density. For parameters appropriate to the North Pacific, the eastern shadow zone is of very limited extent.Observations of salinity and potential vorticity within and below the ventilated layer bear out model predictions of the extent of the western shadow zone.

Talley, LD.  2003.  Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography. 33:530-560.   10.1175/1520-0485(2003)033<0530:siadoc>2.0.co;2   AbstractWebsite

The ocean's overturning circulation and associated heat transport are divided into contributions based on water mass ventilation from 1) shallow overturning within the wind-driven subtropical gyres to the base of the thermocline, 2) overturning into the intermediate depth layer (500-2000 m) in the North Atlantic and North Pacific, and 3) overturning into the deep layers in the North Atlantic (Nordic Seas overflows) and around Antarctica. The contribution to South Pacific and Indian heat transport from the Indonesian Throughflow is separated from that of the subtropical gyres and is small. A shallow overturning heat transport of 0.6 PW dominates the 0.8-PW total heat transport at 24degreesN in the North Pacific but carries only 0.1-0.4 PW of the 1.3-PW total in the North Atlantic at 24degreesN. Shallow overturning heat transports in the Southern Hemisphere are also poleward: -0.2 to -0.3 PW southward across 30degreesS in each of the Pacific and Indian Oceans but only -0.1 PW in the South Atlantic. Intermediate water formation of 2 and 7 Sv (1 Sv = 10(6) m(3) s(-1)) carries 0.1 and 0.4 PW in the North Pacific and Atlantic, respectively, while North Atlantic Deep Water formation of 19 Sv carries 0.6 PW. Because of the small temperature differences between Northern Hemisphere deep waters that feed the colder Antarctic Bottom Water (Lower Circumpolar Deep Water), the formation of 22 Sv of dense Antarctic waters is associated with a heat transport of only -0.14 PW across 30degreesS (all oceans combined). Upwelling of Circumpolar Deep Water north of 30degreesS in the Indian (14 Sv) and South Pacific (14 Sv) carries -0.2 PW in each ocean.

Talley, LD.  2013.  Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Volume 4: Indian Ocean. ( and M. Sparrow CPJ, Ed.)., Southampton, U.K.: International WOCE Project Office
Talley, LD, Min DH, Lobanov VB, Luchin VA, Ponomarev VI, Salyuk AN, Shcherbina AY, Tishchenko PY, Zhabin I.  2006.  Japan/East Sea water masses and their relation to the sea's circulation. Oceanography. 19:32-49.   10.5670/oceanog.2006.42   Abstract

The Japan/East Sea is a major anomaly in the ventilation and overturn picture of the Pacific Ocean. The North Pacific is well known to be nearly unventilated at intermediate and abyssal depths, reflected in low oxygen concentration at 1000 m (Figure 1). (High oxygen indicates newer water in more recent contact with the atmosphere. Oxygen declines as water "ages" after it leaves the sea surface mainly because of bacterial respiration.) Even the small production of North Pacific Intermediate Water in the Okhotsk Sea (Talley, 1991; Shcherbina et al., 2003) and the tiny amount of new bottom water encountered in the deep Bering Sea (Warner and Roden, 1995) have no obvious impact on the overall oxygen distribution at 1000 m and below, down to 3500 m, which is the approximate maximum depth of the Bering, Okhotsk, and Japan/East Seas.

Talley, LD.  1983.  Radiating Barotropic Instability. Journal of Physical Oceanography. 13:972-987.   10.1175/1520-0485(1983)013<0972:rbi>2.0.co;2   AbstractWebsite

The linear stability of zonal, parallel shear flow on a beta-plane is discussed. While the localized shear region supports unstable waves, the far-field can support Rossby waves because of the ambient potential-vorticity gradient. An infinite zonal flow with a continuous cross-stream velocity gradient is approximated with segments of uniform flow, joined together by segments of uniform potential vorticity. This simplification allows an exact dispersion relation to be found. There are two classes of linearly unstable solutions. One type is trapped to the source of energy and has large growth rates. The second type is weaker instabilities which excite Rossby waves in the far-field: the influence of these weaker instabilities extends far beyond that of the most unstable waves.

Talley, LD, Stammer D, Fukumori I.  2001.  The WOCE Synthesis. Ocean circulation and climate : observing and modelling the global ocean. ( Siedler G, Church J, Gould WJ, Eds.).:525-546., San Diego, Calif. London: Academic Abstract
n/a
Talley, LD.  1996.  North Atlantic circulation and variability, reviewed for the CNLS conference. Physica D. 98:625-646.   10.1016/0167-2789(96)00123-6   AbstractWebsite

The circulation and water mass structure of the North Atlantic are reviewed, with emphasis on the large-scale overturning cell which produces North Atlantic Deep Water (NADW). Properties and transports for its major components (Nordic Seas Overflow Water, Labrador Sea Water, Mediterranean Water, Antarctic Intermediate Water and Antarctic Bottom Water) are reviewed. The transport estimates and properties of NADW coupled with the observed meridional heat transport in the Atlantic limit the temperature of northward flow which replenishes the NADW to the range 11-15 degrees C. The high salinity of the North Atlantic compared with other ocean basins is important for its production of intermediate and deep waters; about one third of its higher evaporation compared with the North Pacific is due to the Mediterranean. The evaporation/precipitation balance for the North Atlantic is similar to the Indian and South Atlantic Oceans; the difference between the North and South Atlantic may be that high evaporation in the North Atlantic affects much greater depths through Mediterranean Water production. Also described briefly is variability of water properties in the upper layers of the subtropical/subpolar North Atlantic, as linked to the North Atlantic Oscillation. The oceanographic time series at Bermuda is then used to show decadal variations in the properties of the Subtropical Mode Water, a thick layer which lies in the upper 500 m. Salinity of this layer and at the sea surface increases during periods when the North Atlantic westerlies weaken between Iceland and the Azores and shift southwestward. (The North Atlantic Oscillation index is low during these periods). Temperature at the surface and in this layer are slightly negatively correlated with salinity, decreasing when salinity increases. It is hypothesized that the salinity increases result from incursion of saline water from the eastern subtropical gyre forced by the southward migration of the westerlies, and that the small temperature decreases are due to increased convection in the Sargasso Sea, also resulting from the southward shift of the westerlies.

Talley, LD, Fryer G, Lumpkin R.  2013.  Oceanography. The Pacific Islands: Environment and Society. ( Rapaport M, Ed.)., Honolulu: University of Hawai'i Press