Publications with links

Export 55 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Talley, LD, Sprintall J.  2005.  Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. Journal of Geophysical Research-Oceans. 110   10.1029/2004jc002826   AbstractWebsite

[1] The narrow westward flow of the South Equatorial Current ( SEC), centered at 12 degrees S and carrying freshened water from the Indonesian seas, is traced across the Indian Ocean using data from the World Ocean Circulation Experiment. The jet is remarkably zonal and quasi-barotropic, following the potential vorticity contours characteristic of the tropics, separating higher-oxygen and lower-nutrient waters of the subtropics from the oxygen-depleted waters of the tropics. The fresh surface waters are the usual Indonesian Throughflow Water reported previously. Less well studied is the intermediate-depth SEC carrying fresher water from the Banda Sea and Pacific, known as Indonesian Intermediate Water (IIW) or Banda Sea Intermediate Water. The high-silica signature of IIW is documented here, permitting us to ( 1) trace the spread of IIW from sill density at Leti Strait to higher density as it is diluted toward the west and ( 2) define an IIW core for transport estimates, of 3 to 7 Sv westward, using geostrophic and LADCP velocities. The high IIW silica is traced to the Banda Sea, arising from known diapycnal mixing of Pacific waters entering through Lifamatola Strait and local sources. New heat, freshwater, oxygen, and silica budgets within the Indonesian seas suggest at least 3 Sv of inflow through the relatively deep Lifamatola Strait, supplementing the observed 9 Sv through the shallower Makassar Strait. Both shallow and deep inflows and outflows, along with vigorous mixing and internal sources within the Indonesian seas, are required to capture the transformation of Pacific to Indonesian Throughflow waters.

Talley, LD, McCartney MS.  1982.  Distribution and Circulation of Labrador Sea-Water. Journal of Physical Oceanography. 12:1189-1205.   10.1175/1520-0485(1982)012<1189:dacols>2.0.co;2   AbstractWebsite

Labrador Sea Water is the final product of the cyclonic circulation of Subpolar Mode Water in the open northern North Atlantic (McCartney and Talley, 1982). The temperature and salinity of the convectively formed Subpolar Mode Water decrease from 14.7°C, 36.08‰ to 3.4°C, 34.88‰ on account of the cumulative effects of excess precipitation and cooling. The coldest Mode Water is Labrador Sea Water, which spreads at mid-depths and is found throughout the North Atlantic Ocean north of 40°N and along its western boundary to 18°N.A vertical minimum in potential vorticity is used as the primary tracer for Labrador Sea Water. Labrador Sea Water is advected in three main directions out of the Labrador Sea: 1) northeastward into the Irminger Sea, 2) southeastward across the Atlantic beneath the North Atlantic current, and 3) southward past Newfoundland with the Labrador Current and thence westward into the Slope Water region, crossing under the Gulf Stream off Cape Hatteras.The Labrador Sea Water core is nearly coincident with an isopycnal which also intersects the lower part of the Mediterranean Water, whose high salinity and high potential vorticity balance the low salinity and low potential vorticity of the Labrador Sea Water. Nearly isopycnal mixing between them produces the upper part of the North Atlantic Deep Water.A 27-year data set from the Labrador Sea at Ocean Weather Station Bravo shows decade-long changes in the temperature, salinity, density and formation rate of Labrador Sea Water, indicating that Labrador Sea Water property distributions away from the Labrador Sea are in part due to changes in the source.

Talley, LD.  1999.  Simple coupled midlatitude climate models. Journal of Physical Oceanography. 29:2016-2037.   10.1175/1520-0485(1999)029<2016:scmcm>2.0.co;2   AbstractWebsite

A set of simple analytical models is presented and evaluated for interannual to decadal coupled ocean-atmosphere modes at midlatitudes. The atmosphere and ocean are each in Sverdrup balance at these long timescales. The atmosphere's temperature response to heating determines the spatial phase relation between SST and sea level pressure (SLP) anomalies. Vertical advection balancing heating produces high (low) SLP lying east of warm (cold) SST anomalies, as observed in the Antarctic circumpolar wave (ACW), the decadal North Pacific mode, and the interannual North Atlantic mode. Zonal advection in an atmosphere with a rigid lid produces low SLP east of warm SST. However, if an ad hoc equivalent barotropic atmospheric response is assumed, high SLP lies east of warm SST. Relaxation to heating produces behavior like the observed North Atlantic decadal pattern, with low SLP over warm SST. Meridional advection in the atmosphere cannot produce the observed SST/SLP patterns. The dominant balance in the oceans temperature equation determines the phase speed of the modes. The coupled mode is nondispersive in all models examined here, indicating the need for additional processes. For modes with an SST-SLP offset as observed in the ACW and North Pacific, Ekman convergence acting as a heat source causes eastward propagation relative to the mean ocean flow. Sverdrup response to Ekman convergence, acting on the mean meridional temperature gradient, causes westward propagation relative to the mean ocean Row. When the ocean temperature adjusts through surface heat flux alone, the mode is advected by the mean ocean flow and is damped. Relaxation to heating in the atmosphere, when operating with Sverdrup response in the ocean, produces the only complete solution presented here that exhibits growth, with an a-folding timescale of order (100 days). This solution appears appropriate for the North Atlantic decadal mode. In Northern Hemisphere basins, with meridional boundaries, the: same sets of dynamics create the observed SST-SLP phase relation. An additional factor is the creation of SST anomalies through variations in the western boundary current strengths, which are related to the zonally integrated wind stress curl over the whole basin. If barotropic and hence fast adjustment is assumed, the resulting positive feedback can maintain or strengthen the coupled anomalies in the North Pacific and interannual North Atlantic modes.

Talley, LD, Nagata Y.  1995.  PICES Working Group I: Review of the Okhotsk Sea and Oyashio Region. PICES Scientific Report. 2:227.: North Pacific Marine Science Organization (PICES) Abstract
n/a
Talley, LD, Pickard GL, Emery WJ, Swift JH.  2011.  Descriptive physical oceanography : an introduction. :viii,555p.,60p.ofplates., Amsterdam ; Boston: Academic Press Abstract

n/a

Talley, LD, White WB.  1987.  Estimates of Time and Space Scales at 300-Meters in the Midlatitude North Pacific from the Transpac-Xbt Program. Journal of Physical Oceanography. 17:2168-2188.   10.1175/1520-0485(1987)017<2168:eotass>2.0.co;2   AbstractWebsite

Estimates of length and time scales of temperature variability at 300 meters in the midlatitude North Pacific are made. Data are XBT traces collected from 1976 to 1984 in the TRANSPAC Volunteer Observing Ship program. Temperatures at 300 meters are grouped in two-mouth bins and gridded using the Surface II mapping program.Temperature variance about the time mean is largest in the Kuroshio Extension and nearly constant in the eastern North Pacific. A cooling trend occurred in the eastern North Pacific over the eight years of the dataset. In the western Pacific, the annual cycle is most intense 1°–2° north of the Kuroshio Extension, with an indication of meridional propagation away from the region of most intense variability. Propagation of annual waves in the eastern Pacific was predominantly northwestward.Wavenumber and frequency spectra are computed from normalized temperatures with the mean and bimonthly average removed in order to eliminate the dominant annual cycle. Based on the overall temperature variance, the North Pacific was divided into western and eastern regions. Zonal wavenumber and frequency spectra and two-dimensional ω/k spectra were computed for a number of latitudes in the eastern and western regions. Two-dimensional k/l spectra were also computed for the western and eastern regions. The spectra indicate westward propagation throughout the midlatitude North Pacific with additional eastward propagation in the Kuroshio Extension region, shorter length and time scales in the Kuroshio Extension compared with other regions, and slight dominance of southwestward propagation in bath the eastern and western North Pacific.Tests to determine the effective spatial resolution of the dataset indicate that local average-station spacing is a good measure of local Nyquist wavelength. However, because of the nearly random sampling in a spatially limited region, an unresolved wave is aliased more or less in a band stretching towards low wavenumber rather than folded in coherent, predictable locations in the spectrum. With the choice of a two-month time bin, spectra are about equally aliased in space and time, with Nyquist wavelength and period close to the beginning of energy rolloff reported in other surveys, which have better spatial resolution but less degrees of freedom.

Talley, LD, Reid JL, Robbins PE.  2003.  Data-based meridional overturning streamfunctions for the global ocean. Journal of Climate. 16:3213-3226.   10.1175/1520-0442(2003)016<3213:dmosft>2.0.co;2   AbstractWebsite

The meridional overturning circulation for the Atlantic, Pacific, and Indian Oceans is computed from absolute geostrophic velocity estimates based on hydrographic data and from climatological Ekman transports. The Atlantic overturn includes the expected North Atlantic Deep Water formation ( including Labrador Sea Water and Nordic Sea Overflow Water), with an amplitude of about 18 Sv through most of the Atlantic and an error of the order of 3 - 5 Sv (1 Sv = 10(6) m(3) s(-1)). The Lower Circumpolar Deep Water ( Antarctic Bottom Water) flows north with about 8 Sv of upwelling and a southward return in the South Atlantic, and 6 Sv extending to and upwelling in the North Atlantic. The northward flow of 8 Sv in the upper layer in the Atlantic ( sea surface through the Antarctic Intermediate Water) is transformed to lower density in the Tropics before losing buoyancy in the Gulf Stream and North Atlantic Current. The Pacific overturning streamfunction includes 10 Sv of Lower Circumpolar Deep Water flowing north into the South Pacific to upwell and return southward as Pacific Deep Water, and a North Pacific Intermediate Water cell of 2 Sv. The northern North Pacific has no active deep water formation at the sea surface, but in this analysis there is downwelling from the Antarctic Intermediate Water into the Pacific Deep Water, with upwelling in the Tropics. For global Southern Hemisphere overturn across 30degreesS, the overturning is separated into a deep and a shallow overturning cell. In the deep cell, 22 - 27 Sv of deep water flows southward and returns northward as bottom water. In the shallow cell, 9 Sv flows southward at low density and returns northward just above the intermediate water density. In all three oceans, the Tropics appear to dominate upwelling across isopycnals, including the migration of the deepest waters upward to the thermocline in the Indian and Pacific. Estimated diffusivities associated with this tropical upwelling are the same order of magnitude in all three oceans. It is shown that vertically varying diffusivity associated with topography can produce deep downwelling in the absence of external buoyancy loss. The rate of such downwelling for the northern North Pacific is estimated as 2 Sv at most, which is smaller than the questionable downwelling derived from the velocity analysis.

Talley, LD, Baringer MO.  1997.  Preliminary results from WOCE hydrographic sections at 80 degrees E and 32 degrees S in the central Indian Ocean. Geophysical Research Letters. 24:2789-2792.   10.1029/97gl02657   AbstractWebsite

The hydrographic properties and circulation along sections at 80 degrees E and 32 degrees S in March, 1995, in the Indian Ocean are described very briefly. A halocline was well-developed in the tropics. A westward coastal jet of fresh Bay of Bengal water was present at the sea surface at Sri Lanka with eastward flow of saline Arabian Sea water below. The Equatorial Undercurrent was well developed as were the deep equatorial jets. The Indonesian throughflow jet presented a large dynamic signature at 10 to 14 degrees S coinciding with a strong front in all properties to great depth. Its mid-depth salinity minimum is separated from that of the Antarctic Intermediate Water. The Subantarctic Mode Water of the southeastern Indian Ocean imparts its high oxygen ventilation signature to the whole of the transects, including the tropical portion. The deepest water in the Central Indian Basin is pooled in the center of the basin, and its principal source appears to be the sill at 11 degrees S through the Ninetyeast Ridge. Northward deep water transports across the 32 degrees S section were similar to those observed in 1987 but the deep water was lower in oxygen and fresher than in 1987. Upper ocean waters at 32 degrees S were more saline and warmer in 1995.

Talley, LD, Johnson GC.  1994.  Deep, Zonal Subequatorial Currents. Science. 263:1125-1128.   10.1126/science.263.5150.1125   AbstractWebsite

Large-scale, westward-extending tongues of warm (Pacific) and cold (Atlantic) water are found between 2000 and 3000 meters both north and south of the equator in the Pacific and Atlantic oceans. They are centered at 5-degrees to 8-degrees north and 10-degrees to 15-degrees south (Pacific) and 5-degrees to 8-degrees north and 15-degrees to 20-degrees south (Atlantic). They are separated in both oceans by a contrasting eastward-extending tongue, centered at about 1-degrees to 2-degrees south, in agreement with previous helium isotope observations (Pacific). Thus, the indicated deep tropical westward flows north and south of the equator and eastward flow near the equator may result from more general forcing than the hydrothermal forcing previously hypothesized.

Talley, LD.  1984.  Meridional Heat-Transport in the Pacific-Ocean. Journal of Physical Oceanography. 14:231-241.   10.1175/1520-0485(1984)014<0231:mhtitp>2.0.co;2   AbstractWebsite

The heat transported meridionally in the Pacific Ocean is calculated from the surface heat budgets of Clark and Weare and others; both budgets were based on Bunker's method with different radiation formulas. The meridional heat transport is also calculated from the surface heat budget of Esbensen and Kushnir, who used Budyko's method. The heat transport is southward at most latitudes if the numbers of Clark and of Weare are used. It is northward in the North Pacific and southward in the South Pacific if Eshensen and Kushnir's numbers are used. Systematic errors in both calculations appear to be so large that confident determination of even the sign of the heat transport in the North Pacific is not possible. The amount of heat transported poleward by all oceans is obtained from the Pacific Ocean calculation and transports in the Atlantic and Indian Oceans based on Bunker's surface heat fluxes.

Talley, LD.  1996.  Physical oceanography. Encylopedia of Earth Sciences. :745-749., New York: MacMillan Publishing Abstract
n/a
Talley, LD, Joyce TM.  1992.  The Double Silica Maximum in the North Pacific. Journal of Geophysical Research-Oceans. 97:5465-5480.   10.1029/92jc00037   AbstractWebsite

The North Pacific has two vertical silica maxima. The well-known intermediate maximum occurs between 2000 and 2500 m with a potential density relative to 2000 dbar of 36.90 in the northeastern Pacific. The deep maximum, which has not been observed extensively before, is found at or near the ocean bottom in the northern North Pacific in a narrow latitude range. Maps of silica on isopycnals which intersect the intermediate and bottom maxima show that the lowest silica is found in the western tropical North Pacific, suggesting a route for the spread of South Pacific water into the deep North Pacific. Low-silica water is found along the western boundary of the North Pacific, with a separate broad tongue south of Hawaii. The highest silica on both isopycnals is in the northeast Pacific. A bottom maximum in the Cascadia Basin in the northeastern Pacific can be differentiated from both open-ocean maxima. Four sources for the vertical maxima are considered: in situ dissolution of sinking panicles, bottom sediment dissolution, hydrothermal venting, and upslope advection in the northeastern Pacific. Because not enough is known about any of these sources, only rough estimates of their contributions can be made. The bottom maximum is most likely to result from bottom sediment dissolution but requires a flux larger than some current direct estimates. The Cascadia Basin bottom maximum may result from both bottom sediment dissolution and hydrothermal venting. The intermediate maximum is likely to result primarily from dissolution of sinking particles. There is no quantitative estimate of the effect of possible upslope advection or enhancement of bottom fluxes due to the Columbia River outflow.

Talley, LD, Raymer ME.  1982.  Eighteen Degree Water variability. Journal of Marine Research. 40:757-775. AbstractWebsite

The Eighteen Degree Water of the western North Atlantic is formed by deep convection in winter. The circulation and changing properties of Eighteen Degree Water are studied using hydrographic data from a long time series at the Panulirus station (32 degrees 10'N, 64 degrees 30'W) and from the Gulf Stream '60 experiment. Due to its relative vertical homogeneity, which persists year-round, the Eighteen Degree Water can be identified by its low potential vorticity (f/rho)(partial derivative rho/partial derivative z). The Eighteen Degree Water is formed in an east-west band of varying characteristics offshore of the Gulf Stream. The Eighteen Degree Water formed at the eastern end of the subtropical gyre recirculates westward past the Panulirus station. Renewal of Eighteen Degree Water occurred regularly from 1954 to 1971, ceased from 1972 to 1975, and began again after 1975. The properties (18 degrees C, 36.5 parts per thousand) of Eighteen Degree Water seen at the Panulirus station were nearly uniform from 1954 to 1964. There was a shift in properties in 1964 and by 1972 the Eighteen Degree Water properties were 17.1 degrees C, 36.4 parts per thousand, The new Eighteen Degree Water formed after 1975 had nearly the same characteristics as that of 1954. The density, potential temperature, salinity and the temperature-salinity relation of the entire upper water column at the Panulirus station changed at the same time as the Eighteen Degree Water properties. The upper water column was denser and colder from 1964 to 1975 than from 1954 to 1964 and after 1975.

Talley, LD.  1999.  Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of global climate change at millennial time scales. ( Clark PU, Webb RS, Keigwin LD, Eds.).:1-22., Washington, DC: American Geophysical Union Abstract
n/a
Talley, LD, Nagata Y, Fujimura M, Iwao T, Kono T, Inagake D, Hirai M, Okuda K.  1995.  North Pacific Intermediate Water in the Kuroshio Oyashio Mixed Water Region. Journal of Physical Oceanography. 25:475-501.   10.1175/1520-0485(1995)025<0475:npiwit>2.0.co;2   AbstractWebsite

The North Pacific Intermediate Water (NPIW) orginates as a vertical salinity minimum in the mixed water region (MWR) between the Kuroshio and Oyashio, just east of Japan. Salinity minima in this region are examined and related to the water mass structures, dynamical features, and winter mixed layer density of waters of Oyashio origin. Stations in the MWR are divided into five regimes, of which three represent source waters (from the Kuroshio, Oyashio, and Tsugaru Current) and two are mixed waters formed from these three inputs. Examination of NPIW at stations just east of the MWR indicates that the mixed waters in the MWR are the origin of the newest NPIW. Multiple salinity minima with much finestructure are seen throughout the MWR in spring 1989, with the most fragmented occurring around the large warm core ring centered at 37 degrees N, 144 degrees E, suggesting that this is a dominant site for salinity minimum formation. The density of the NPIW in the MWR is slightly higher than the apparent late winter surface density of the subpolar water. It is hypothesized that the vertical mixing that creates interfacial layers above the salinity minima also increases the density of the minima to the observed NPIW density. Transport of new intermediate water (26.65-27.4 sigma(theta)) eastward out of the MWR is about 6 Sv (Sv = 10(6)m(3)s(-1)), of which roughly 45% is of Oyashio origin and the other 55% of Kuroshio origin. Therefore, the transport of subpolar water into the subtropical gyre in the western North Pacific is estimated to be about 3 Sv.

Talley, LD.  2013.  Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports. Oceanography. 26:80-97. AbstractWebsite

The overturning pathways for the surface-ventilated North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) and the diffusively formed Indian Deep Water (IDW) and Pacific Deep Water (PDW) are intertwined. The global overturning circulation (GOC) includes both large wind-driven upwelling in the Southern Ocean and important internal diapycnal transformation in the deep Indian and Pacific Oceans. All three northern-source Deep Waters (NADW, IDW, PDW) move southward and upwell in the Southern Ocean. AABW is produced from the denser, salty NADW and a portion of the lighter, low oxygen IDW/PDW that upwells above and north of NADW. The remaining upwelled IDW/PDW stays near the surface, moving into the subtropical thermoclines, and ultimately sources about one-third of the NADW. Another third of the NADW comes from AABW upwelling in the Atlantic. The remaining third comes from AABW upwelling to the thermocline in the Indian-Pacific. Atlantic cooling associated with NADW formation (0.3 PW north of 32 degrees S; 1 PW = 1015 W) and Southern Ocean cooling associated with AABW formation (0.4 PW south of 32 degrees S) are balanced mostly by 0.6 PW of deep diffusive heating in the Indian and Pacific Oceans; only 0.1 PW is gained at the surface in the Southern Ocean. Thus, while an adiabatic model of NADW global overturning driven by winds in the Southern Ocean, with buoyancy added only at the surface in the Southern Ocean, is a useful dynamical idealization, the associated heat changes require full participation of the diffusive Indian and Pacific Oceans, with a basin-averaged diffusivity on the order of the Munk value of 10(-4) m(2) s(-1).

Talley, LD.  1988.  Potential Vorticity Distribution in the North Pacific. Journal of Physical Oceanography. 18:89-106.   10.1175/1520-0485(1988)018<0089:pvditn>2.0.co;2   AbstractWebsite

Vertical sections and maps of potential vorticity ρ−1f∂ρ/∂z for the North Pacific are presented. On shallow isopycnals, high potential vorticity is found in the tropics, subpolar gyre, and along the eastern boundary of the subtropical gyre, all associated with Ekman upwelling. Low potential vorticity is found in the western subtropical gyre (subtropical mode water), in a separate patch near the sea surface in the eastern subtropical gyre and extending around the gyre, and near sea-surface outcrops in the subpolar gyre; the last is analogous to the subpolar mode water of the North Atlantic and Southern Ocean.Meridional gradients of potential vorticity are high between the subtropical and subpolar gyres at densities which outcrop only in the subpolar gyre; lateral gradients of potential vorticity are low in large regions of the subtropical gyre on these isopycnals. On slightly denser isopycnals which do not outcrop in the North Pacific, there are large regions of low potential vorticity gradients which cross the subtropical-subpolar gyre boundary. These regions decrease in area with depth and vanish between 2500 and 3000 meters. Regions of low lateral gradients of potential vorticity are surrounded by and overlie regions where the meridional gradient of potential vorticity is approximately β. In the abyssal waters, below 3500 meters, meridional potential vorticity gradients again decrease, perhaps associated with slow geothermal heating. The depth and shape of the region wheel potential vorticity is relatively uniform or possesses closed contours is noted and related to theories of wind-driven circulation.

Talley, LD, Fryer G, Lumpkin R.  1998.  Physical oceanography of the tropical Pacific. Geography of the Pacific Islands. ( Rapaport M, Ed.).:19-32., Honolulu: Bess Press Abstract
n/a
Tamsitt, V, Drake HF, Morrison AK, Talley LD, Dufour CO, Gray AR, Griffies SM, Mazloff MR, Sarmiento JL, Wang J, Weijer W.  2017.  Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nature Communications. 8:172.   10.1038/s41467-017-00197-0   Abstract

Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60–90 years.

Tamsitt, V, Talley LD, Mazloff MR.  2019.  A deep eastern boundary current carrying Indian deep water south of Australia. Journal of Geophysical Research: Oceans. 124:2218-2238.   10.1029/2018jc014569   Abstract

In the Southern Hemisphere, the ocean's deep waters are predominantly transported from low to high latitudes via boundary currents. In addition to the Deep Western Boundary Currents, pathways along the eastern boundaries of the southern Atlantic, Indian, and Pacific transport deep water poleward into the Southern Ocean where these waters upwell to the sea surface. These deep eastern boundary currents and their physical drivers are not well characterized, particularly those carrying carbon and nutrient-rich deep waters from the Indian and Pacific basins. Here we describe the poleward deep eastern boundary current that carries Indian Deep Water along the southern boundary of Australia to the Southern Ocean using a combination of hydrographic observations and Lagrangian experiments in an eddy-permitting ocean state estimate. We find strong evidence for a deep boundary current carrying the low-oxygen, carbon-rich signature of Indian Deep Water extending between 1,500 and 3,000 m along the Australian continental slope, from 30°S to the Antarctic Circumpolar Current southwest of Tasmania. From the Lagrangian particles it is estimated that this pathway transports approximately 5.8 ± 1.3 Sv southward from 30°S to the northern boundary of the Antarctic Circumpolar Current. The volume transport of this pathway is highly variable and is closely correlated with the overlying westward volume transport of the Flinders Current.

Tamsitt, V, Abernathey RP, Mazloff MR, Wang J, Talley LD.  2018.  Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean. Journal of Geophysical Research: Oceans.   10.1002/2017JC013409   AbstractWebsite

Upwelling of northern deep waters in the Southern Ocean is fundamentally important for the closure of the global meridional overturning circulation and delivers carbon and nutrient‐rich deep waters to the sea surface. We quantify water mass transformation along upwelling pathways originating in the Atlantic, Indian, and Pacific and ending at the surface of the Southern Ocean using Lagrangian trajectories in an eddy‐permitting ocean state estimate. Recent related work shows that upwelling in the interior below about 400 m depth is localized at hot spots associated with major topographic features in the path of the Antarctic Circumpolar Current, while upwelling through the surface layer is more broadly distributed. In the ocean interior upwelling is largely isopycnal; Atlantic and to a lesser extent Indian Deep Waters cool and freshen while Pacific deep waters are more stable, leading to a homogenization of water mass properties. As upwelling water approaches the mixed layer, there is net strong transformation toward lighter densities due to mixing of freshwater, but there is a divergence in the density distribution as Upper Circumpolar Deep Water tends become lighter and dense Lower Circumpolar Deep Water tends to become denser. The spatial distribution of transformation shows more rapid transformation at eddy hot spots associated with major topography where density gradients are enhanced; however, the majority of cumulative density change along trajectories is achieved by background mixing. We compare the Lagrangian analysis to diagnosed Eulerian water mass transformation to attribute the mechanisms leading to the observed transformation.

Tamsitt, V, Talley LD, Mazloff MR, Cerovecki I.  2016.  Zonal variations in the Southern Ocean heat budget. Journal of Climate. 29:6563-6579.   10.1175/JCLI-D-15-0630.1   AbstractWebsite

The spatial structure of the upper ocean heat budget in the Antarctic Circumpolar Current (ACC) is investigated using the ⅙°, data-assimilating Southern Ocean State Estimate (SOSE) for 2005–10. The ACC circumpolar integrated budget shows that 0.27 PW of ocean heat gain from the atmosphere and 0.38 PW heat gain from divergence of geostrophic heat transport are balanced by −0.58 PW cooling by divergence of Ekman heat transport and −0.09 PW divergence of vertical heat transport. However, this circumpolar integrated balance obscures important zonal variations in the heat budget. The air–sea heat flux shows a zonally asymmetric pattern of ocean heat gain in the Indian and Atlantic sectors and ocean heat loss in the Pacific sector of the ACC. In the Atlantic and Indian sectors of the ACC, the surface ocean heat gain is primarily balanced by divergence of equatorward Ekman heat transport that cools the upper ocean. In the Pacific sector, surface ocean heat loss and cooling due to divergence of Ekman heat transport are balanced by warming due to divergence of geostrophic heat advection, which is similar to the dominant heat balance in the subtropical Agulhas Return Current. The divergence of horizontal and vertical eddy advection of heat is important for warming the upper ocean close to major topographic features, while the divergence of mean vertical heat advection is a weak cooling term. The results herein show that topographic steering and zonal asymmetry in air–sea exchange lead to substantial zonal asymmetries in the heat budget, which is important for understanding the upper cell of the overturning circulation.

Tishchenko, PY, Talley LD, Lobanov VB, Nedashkovskii AP, Pavlova GY, Sagalaev SG.  2007.  The influence of geochemical processes in the near-bottom layer on the hydrochemical characteristics of the waters of the Sea of Japan. Oceanology. 47:350-359.   10.1134/s0001437007030071   AbstractWebsite

According to the results of the international expedition aboard the R/Vs Roger Revelle and Professor Khromov in the summer 1999, areas with low oxygen contents (below 210 mu M/kg) and those with increased contents of dissolved inorganic carbon and phosphates were found that roughly coincided with one another. These areas are located near the bottom on the southwestern slope of the Tsushima Basin in the region of the Korea Strait and on the continental slope in the region of the Tatar Strait in the northern part of the sea at about 46 degrees N. The set of hydrochemical data points to a high geochemical activity in the near-bottom layer of the areas noted. This activity is confirmed by direct observations of the composition of the interstitial water in the sediments collected in the northern part of the sea during the expedition of R/V Akademik M.A. Lavrent'ev in 2003. It was supposed that the main cause of the increased geochemical activity is the runoff of suspended and dissolved matter from the Korea and Tatar straits. In the areas mentioned, the near-bottom waters are characterized by low values of the nitrogen-phosphorus ratio (below 10), which is geochemical proof of the denitrification process occurring under the conditions of high oxygen concentrations characteristic of the Sea of Japan. Based on the value of the annual production in the Sea of Japan, a rate of denitrification equal to 3.4 x 10(12) gN/year was calculated. Hence, it is confirmed that the geochemical processes in the near-bottom layer have a direct influence on the spatiotemporal characteristics of the hydrochemical properties of the waters of the Sea of Japan.

Tishchenko, PY, Talley LD, Nedashkovskii AP, Sagalaev SG, Zvalinskii VI.  2002.  Temporal variability of the hydrochemical properties of the waters of the Sea of Japan. Oceanology. 42:795-803. AbstractWebsite

Hydrochemical studies were performed in the Sea of Japan from onboard R/V Akademik Vinogradov in 1992 and R/Vs Roger Revelle and Professor Khromov in 1999. A comparison of the hydrochemical properties (concentrations of dissolved oxygen and nutrients and proteins of the carbonate system) of the waters of the Sea of Japan with those of the adjacent basins (the Sea of Okhotsk, Pacific Ocean, and East China Sea) demonstrates significant differences between them. In addition, a significant temporal variability of the hydrochemical properties of the intermediate and abyssal waters of the Sea of Japan was revealed. A general increase in the contents of inorganic forms of phosphorus, nitrogen, and normalized organic matter along with a general decrease in the oxygen concentration and normalized alkalinity with time was established. We suggest a model for an open basin, in which the principal reason for the observed features and temporal variability of the hydrochemical properties is related to the water exchange between the Sea of Japan and adjacent basins. A supposition is posed on the strong dependence of the water exchange on the variability of the intensity analysis direction of the major currents of the northwestern Pacific Ocean, especially the Kuroshio Current.

Tishchenko, PY, Talley LD, Lobanov VB, Zhabin IA, Luchm VA, Nedashkovskii AP, Sagalaev SG, Chichkin RV, Shkirnikova EM, Ponomarev VI, Masten D, Kang DJ, Kim KR.  2003.  Seasonal variability of the hydrochemical conditions in the sea of Japan. Oceanology. 43:643-655. AbstractWebsite

In the summer of 1999 and the winter of 2000, during international expeditions of R/Vs Professor Khromov and Roger Revelle, hydrological and hydrochemical studies of the Sea of Japan were performed. Comparing the hydrochemical characteristics of the Sea of Japan in the summer and winter seasons, we have found that the seasonal variability affects not only the upper quasihomogeneous layer but also the deeper layers. This variability is caused by the intensification of vertical mixing during the winter season. It was shown that the mixing intensification in the deep layers of the sea in the winter might be caused both by the slope convection and by the deep convection in the open part of the sea, penetrating deeper than 1000 in. It was found that the area of positive values of the biological constituent of the apparent oxygen consumption coincides with the area of deep convection. The climatic zoning in the distribution of partial pressure of carbon dioxide was revealed for both seasons. In the northwestern part of the sea, carbon dioxide is released into the atmosphere due to the deep convection in the winter and the heating process in the summer. The southern part of the sea absorbs the atmospheric carbon dioxide because of the process of photosynthesis and cooling of the waters supplied from the Korea Strait.