Publications with links

Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I [J] K L M N O P Q R S T U V W X Y Z   [Show ALL]
J
Johnson, KS, Plant JN, Coletti LJ, Jannasch HW, Sakamoto CM, Riser SC, Swift DD, Williams NL, Boss E, Haentjens N, Talley LD, Sarmiento JL.  2017.  Biogeochemical sensor performance in the SOCCOM profiling float array. Journal of Geophysical Research-Oceans. 122:6416-6436.   10.1002/2017jc012838   AbstractWebsite

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 +/- 1%, nitrate to within 0.5 +/- 0.5 mu mol kg(-1), and pH to 0.005 +/- 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m(-3) or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.

Johnson, GC, Talley LD.  1997.  Deep tracer and dynamical plumes in the tropical Pacific Ocean. Journal of Geophysical Research-Oceans. 102:24953-24964.   10.1029/97jc01913   AbstractWebsite

Anomalous middepth plumes in potential temperature-salinity, theta-S, and buoyancy frequency squared, N-2, Originate east of the East Pacific Rise Crest and decay toward the west. Conductivity-temperature-depth (CTD) data from recent hydrographic sections at 15 degrees S and 10 degrees N are used together with meridional sections at 110 degrees, 135 degrees, and 151 degrees W to map these structures. Warm salty plumes west of the rise crest have maxima centered at 2700 m, 10 degrees S and 8 degrees N, and are interrupted by a cold, fresh tongue centered at 2900 m, 2 degrees S. The theta-S anomalies decay to half their peak strength 2800 km to the west of the rise crest, +/-300 km in the meridional, and +/-0.4 km in the vertical. Vertical N-2 minima occur within the plumes, regions of reduced vertical gradients in theta and S. These minima are underlain by maxima near the depth of the rise crest, about 3200 m. The N-2 plumes decay more rapidly to the west of the rise crest than do the theta-S plumes. The N-2 structure is consistent with a pair of stacked gyres in each hemisphere. There are at least three possible mechanisms consistent with some aspects of these features. First, a deep maximum in upwelling somewhere below 2700 m would result in equatorvard and westward interior flow at 2700 m. advecting these plumes along with it. Second, rapid upwelling of warm, salty, unstratified water in the eastern basins could result in westward overflows over the rise crest. Third, upwelling and associated entrainment processes owing to hydrothermal venting could result in stacked counter-rotating gyres west of the rise crest.

Johnson, KS, Plant JN, Dunne JP, Talley LD, Sarmiento JL.  2017.  Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production. Journal of Geophysical Research-Oceans. 122:6668-6683.   10.1002/2017jc012839   AbstractWebsite

Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. Vertically resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on profiling floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate profile from the month with the highest winter nitrate minus the mean profile from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout the Southern Ocean south of 30 degrees S. A well-defined, zonal mean distribution is found with highest values (3-4 mol C m(-2) yr(-1)) from 40 to 50 degrees S. Lowest values are found in the subtropics and in the seasonal ice zone. The area weighted mean was 2.9 mol C m(-2) yr(-1) for all regions south of 40 degrees S. Cumulative ANCP south of 50 degrees S is 1.3 Pg C yr(-1). This represents about 13% of global ANCP in about 14% of the global ocean area. Plain Language Summary This manuscript reports on 40 annual cycles of nitrate observed by chemical sensors on SOCCOM profiling floats. The annual drawdown in nitrate concentration by phytoplankton is used to assess the spatial variability of annual net community production in the Southern Ocean. This ANCP is a key component of the global carbon cycle and it exerts an important control on atmospheric carbon dioxide. We show that the results are consistent with our prior understanding of Southern Ocean ANCP, which has required decades of observations to accumulate. The profiling floats now enable annual resolution of this key process. The results also highlight spatial variability in ANCP in the Southern Ocean.

Joyce, TM, Warren BA, Talley LD.  1986.  The Geothermal Heating of the Abyssal Sub-Arctic Pacific-Ocean. Deep-Sea Research Part a-Oceanographic Research Papers. 33:1003-1015.   10.1016/0198-0149(86)90026-9   AbstractWebsite

Recent deep CTD-O2 measurements in the abyssal North Pacific along 175°W, 152°W, and 47°N indicate large-scale changes in the O-S characteristics in the deepest kilometer of the water column. Geothermal heat flux from the abyssal sediments can be invoked as the agent for causing large-scale modification of abyssal temperatures (but not salinities) in the subarctic Pacific Ocean. East-west and north-south thermal age differences of about 100 years are inferred using a spatially uniform geothermal heat flux of 5 x 10-2 WrmW m-2.