Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning

Abernathey, RP, Cerovecki I, Holland PR, Newsom E, Mazlo M, Talley LD.  2016.  Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nature Geoscience. 9:596-+.

Date Published:



circulation, closure, driven, enhancement, evolution, flux, mixed-layer, model, transport, ventilation


Ocean overturning circulation requires a continuous thermodynamic transformation of the buoyancy of seawater. The steeply sloping isopycnals of the Southern Ocean provide a pathway for Circumpolar Deep Water to upwell from mid depth without strong diapycnal mixing(1-3), where it is transformed directly by surface fluxes of heat and freshwater and splits into an upper and lower branch(4-6). While brine rejection from sea ice is thought to contribute to the lower branch(7), the role of sea ice in the upper branch is less well understood, partly due to a paucity of observations of sea-ice thickness and transport(8,9). Here we quantify the sea-ice freshwater flux using the Southern Ocean State Estimate, a state-of-the-art data assimilation that incorporates millions of ocean and ice observations. We then use the water-mass transformation framework(10) to compare the relative roles of atmospheric, sea-ice, and glacial freshwater fluxes, heat fluxes, and upper-ocean mixing in transforming buoyancy within the upper branch. We find that sea ice is a dominant term, with differential brine rejection and ice melt transforming upwelled Circumpolar Deep Water at a rate of similar to 22 x 10(6) m(3) s(-1). These results imply a prominent role for Antarctic sea ice in the upper branch and suggest that residual overturning and wind-driven sea-ice transport are tightly coupled.