Three-dimensional isoneutral potential vorticity structure in the Indian Ocean

Citation:
McCarthy, MC, Talley LD.  1999.  Three-dimensional isoneutral potential vorticity structure in the Indian Ocean. Journal of Geophysical Research-Oceans. 104:13251-13267.

Date Published:

Jun

Keywords:

agulhas retroflection, flow patterns, general-circulation, hydrographic section, intermediate water, neutral surfaces, planetary-waves, thermocline circulation, total geostrophic circulation, worlds oceans

Abstract:

The three-dimensional isoneutral potential vorticity structure of the Indian Ocean is examined using World Ocean Circulation Experiment and National Oceanic and Atmospheric Administration conductivity-temperature-depth data and historical bottle data. The distribution of the potential vorticity is set by the Indian Ocean's source waters and their circulation inside the basin. The lower thermocline has a high potential vorticity signal extending westward from northwest of Australia and a low signal from the Subantarctic Mode Water in the south. The Antarctic Intermediate Water inflow creates patches of high potential vorticity at intermediate depths in the southern Indian Ocean, below which the field becomes dominated by planetary vorticity, indicating a weaker meridional circulation and weaker potential vorticity sources. Wind-driven gyre depths have lower potential vorticity gradients primarily due to same-source waters. Homogenization and western shadow zones are not observed. The P-effect dominates the effect of the Somali Current and the Red Sea Water on the potential vorticity distribution. Isopleths tilt strongly away from latitude lines in the deep and abyssal waters as the Circumpolar Deep Water fills the basins in deep western boundary currents, indicating a strong meridional circulation north of the Antarctic Circumpolar Current. The lower-gradient intermediate layer surrounded vertically by layers with higher meridional potential vorticity gradients in the subtropical Indian Ocean suggests that Rossby waves will travel similar to 1.3 times faster than standard theory predicts. To the south, several pools of homogenized potential vorticity appear in the upper 2000 m of the Southern Ocean where gyres previously have been identified. South of Australia the abyssal potential vorticity structure is set by a combination of the Antarctic Circumpolar Current and the bathymetry.

Notes:

n/a

Website

DOI:

10.1029/1999jc900028