Export 206 results:
Sort by: Author Title Type [ Year  (Desc)]
Leaitch, WR, Russell LM, Liu J, Kolonjari F, Toom D, Huang L, Sharma S, Chivulescu A, Veber D, Zhang WD.  2018.  Organic functional groups in the submicron aerosol at 82.5 degrees N, 62.5 degrees W from 2012 to 2014. Atmospheric Chemistry and Physics. 18:3269-3287.   10.5194/acp-18-3269-2018   AbstractWebsite

The first multi-year contributions from organic functional groups to the Arctic submicron aerosol are documented using 126 weekly-integrated samples collected from April 2012 to October 2014 at the Alert Observatory (82.45 degrees N, 62.51 degrees W). Results from the particle transport model FLEXPART, linear regressions among the organic and inorganic components and positive matrix factorization (PMF) enable associations of organic aerosol components with source types and regions. Lower organic mass ( OM) concentrations but higher ratios of OM to non-sea-salt sulfate mass concentrations (nss-SO4=) accompany smaller particles during the summer (JJA). Conversely, higher OM but lower OM / nss-SO4= 4 accompany larger particles during winter-spring. OM ranges from 7 to 460 ng m(-3), and the study average is 129 ng m(-3). The monthly maximum in OM occurs during May, 1 month after the peak in nss-SO4= and 2 months after that of elemental carbon (EC). Winter (DJF), spring (MAM), summer and fall (SON) values of OM / nss-SO4= are 26, 28, 107 and 39%, respectively, and overall about 40% of the weekly variability in the OM is associated with nss-SO4=. Respective study-averaged concentrations of alkane, alcohol, acid, amine and carbonyl groups are 57, 24, 23, 15 and 11 ng m(-3), representing 42, 22, 18, 14 and 5% of the OM, respectively. Carbonyl groups, detected mostly during spring, may have a connection with snow chemistry. The seasonally highest O/C occurs during winter (0.85) and the lowest O/C is during spring (0.51); increases in O/C are largely due to increases in alcohol groups. During winter, more than 50% of the alcohol groups are associated with primary marine emissions, consistent with Shaw et al. (2010) and Frossard et al. (2011). A secondary marine connection, rather than a primary source, is suggested for the highest and most persistent O/C observed during the coolest and cleanest summer (2013), when alcohol and acid groups made up 63% of the OM. A secondary marine source may be a general feature of the summer OM, but higher contributions from alkane groups to OM during the warmer summers of 2012 (53%) and 2014 (50%) were likely due to increased contributions from combustion sources. Evidence for significant contributions from biomass burning (BB) was present in 4% of the weeks. During the dark months (NDJF), 29, 28 and 14% of the nss-SO4=, EC and OM were associated with transport times over the gas flaring region of northern Russia and other parts of Eurasia. During spring, those percentages dropped to 11% for each of nss-SO4= and EC values, respectively, and there is no association of OM. Large percentages of the Arctic haze characterized at Alert likely have origins farther than 10 days of transport time and may be from outside of the Eurasian region. Possible sources of unusually high nss-SO4= and OM during September-October 2014 are volcanic emissions or the "Smoking Hills"' area of the Northwest Territories, Canada.

Sanchez, KJ, Chen CL, Russell LM, Betha R, Liu J, Price DJ, Massoli P, Ziemba LD, Crosbie EC, Moore RH, Muller M, Schiller SA, Wisthaler A, Lee AKY, Quinn PK, Bates TS, Porter J, Bell TG, Saltzman ES, Vaillancourt RD, Behrenfeld MJ.  2018.  Substantial seasonal contribution of observed biogenic sulfate particles to cloud condensation nuclei. Scientific Reports. 8   10.1038/s41598-018-21590-9   AbstractWebsite

Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm(-3)) and 33% (36 cm(-3)) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm(-3)) in late-autumn but only 4% (4 cm(-3)) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.

Lee, AKY, Chen CL, Liu J, Price DJ, Betha R, Russell LM, Zhang XL, Cappa CD.  2017.  Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions. Atmospheric Chemistry and Physics. 17:15055-15067.   10.5194/acp-17-15055-2017   AbstractWebsite

Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt% of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-off-light aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials con-densed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

Keene, WC, Long MS, Reid JS, Frossard AA, Kieber DJ, Maben JR, Russell LM, Kinsey JD, Quinn PK, Bates TS.  2017.  Factors that modulate properties of primary marine aerosol generated from ambient seawater on ships at sea. Journal of Geophysical Research-Atmospheres. 122:11961-11990.   10.1002/2017jd026872   AbstractWebsite

Model primary marine aerosol (mPMA) was produced by bubbling clean air through flowing natural seawater in a high-capacity generator deployed on ships in the eastern North Pacific and western North Atlantic Oceans. Physicochemical properties of seawater and mPMA were quantified to characterize factors that modulated production. Differences in surfactant organic matter (OM) and associated properties including surface tension sustained plumes with smaller bubble sizes, slower rise velocities, larger void fractions, and older surface ages in biologically productive relative to oligotrophic seawater. Production efficiencies for mPMA number (PEnum) and mass (PEmass) per unit air detrained from biologically productive seawater during daytime were greater and mass median diameters smaller than those in the same seawater at night and in oligotrophic seawater during day and night. PEmass decreased with increasing air detrainment rate suggesting that surface bubble rafts suppressed emission of jet droplets and associated mPMA mass. Relative to bubbles emitted at 60 cm depth, PEnum for bubbles emitted from 100 cm depth was approximately 2 times greater. mPMA OM enrichment factors (EFs) and mass fractions based on a coarse frit, fine frits, and a seawater jet exhibited similar size-dependent variability over a wide range in chlorophyll a concentrations. Results indicate that the physical production of PMA number and mass from the ocean surface varies systematically as interrelated functions of seawater type and, in biologically productive waters, time of day; bubble injection rate, depth, size, and surface age; and physical characteristics of the air-water interface whereas size-resolved OM EFs and mass fractions are relatively invariant.

Murphy, BN, Woody MC, Jimenez JL, Carlton AMG, Hayes PL, Liu S, Ng NL, Russell LM, Setyan A, Xu L, Young J, Zaveri RA, Zhang Q, Pye HOT.  2017.  Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics. 17:11107-11133.   10.5194/acp-17-11107-2017   AbstractWebsite

Mounting evidence from field and laboratory observations coupled with atmospheric model analyses shows that primary combustion emissions of organic compounds dynamically partition between the vapor and particulate phases, especially as near-source emissions dilute and cool to ambient conditions. The most recent version of the Community Multiscale Air Quality model version 5.2 (CMAQv5.2) accounts for the semivolatile partitioning and gas-phase aging of these primary organic aerosol (POA) compounds consistent with experimentally derived parameterizations. We also include a new surrogate species, potential secondary organic aerosol from combustion emissions (pcSOA), which provides a representation of the secondary organic aerosol (SOA) from anthropogenic combustion sources that could be missing from current chemical transport model predictions. The reasons for this missing mass likely include the following: (1) unspeciated semivolatile and intermediate volatility organic compound (SVOC and IVOC, respectively) emissions missing from current inventories, (2) multigenerational aging of organic vapor products from known SOA precur-sors (e.g., toluene, alkanes), (3) underestimation of SOA yields due to vapor wall losses in smog chamber experiments, and (4) reversible organic compounds-water interactions and/or aqueous-phase processing of known organic vapor emissions. CMAQ predicts the spatially averaged contribution of pcSOA to OA surface concentrations in the continental United States to be 38.6 and 23.6% in the 2011 winter and summer, respectively. Whereas many past modeling studies focused on a particular measurement campaign, season, location, or model configuration, we endeavor to evaluate the model and important uncertain parameters with a comprehensive set of United States-based model runs using multiple horizontal scales (4 and 12 km), gas-phase chemical mechanisms, and seasons and years. The model with representation of semivolatile POA improves predictions of hourly OA observations over the traditional nonvolatile model at sites during field campaigns in southern California (CalNex, May-June 2010), northern California (CARES, June 2010), the southeast US (SOAS, June 2013; SEARCH, January and July, 2011). Model improvements manifest better correlations (e.g., the correlation coefficient at Pasadena at night increases from 0.38 to 0.62) and reductions in underprediction during the photochemically active afternoon period (e.g., bias at Pasadena from -5.62 to -2.42 mu gm(-3)). Daily averaged predictions of observations at routine-monitoring networks from simulations over the continental US (CONUS) in 2011 show modest improvement during winter, with mean biases reducing from 1.14 to 0.73 mu gm(-3), but less change in the summer when the decreases from POA evaporation were similar to the magnitude of added SOA mass. Because the model-performance improvement realized by including the relatively simple pcSOA approach is similar to that of more-complicated parameterizations of OA formation and aging, we recommend caution when applying these more-complicated approaches as they currently rely on numerous uncertain parameters. The pcSOA parameters optimized for performance at the southern and northern California sites lead to higher OA formation than is observed in the CONUS evaluation. This may be due to any of the following: variations in real pcSOA in different regions or time periods, too-high concentrations of other OA sources in the model that are important over the larger domain, or other model issues such as loss processes. This discrepancy is likely regionally and temporally dependent and driven by interferences from factors like varying emissions and chemical regimes.

Lou, S, Russell LM, Yang Y, Liu Y, Singh B, Ghan SJ.  2017.  Impacts of interactive dust and its direct radiative forcing on interannual variations of temperature and precipitation in winter over East Asia. Journal of Geophysical Research: Atmospheres. 122:8761-8780.   10.1002/2017JD027267   AbstractWebsite

We used two 150 year preindustrial simulations of the Community Earth System Model, one with interactive dust and the other with prescribed dust, to quantify the impacts of changes in wind during East Asian winter monsoon (EAWM) season on dust emissions, and the resulting consequences for interannual variations of temperature and precipitation over East Asia. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions and the downwind region leads to an increase in direct radiative forcing (RF) at the surface by up to 1.5 W m−2. The effects of EAWM-related variations in surface winds, precipitation, and their effects on dust emissions and wet removal contribute 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions between the strongest and weakest EAWM years (strongest minus weakest) decrease by 0.4–0.6 K from eastern coastal China to Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF, turbulent heat flux at the surface, and northwesterly wind anomalies that bring cold and dry air from Siberia to these regions. Over eastern coastal China, the variations of large-scale precipitation induced by the feedback of EAWM-related changes in wind on dust emissions decrease by 10–30% in winter because of the reduced changes in surface air temperature and the anomalous circulation.

Liu, J, Russell LM, Lee AKY, McKinney KA, Surratt JD, Ziemann PJ.  2017.  Observational evidence for pollution-influenced selective uptake contributing to biogenic secondary organic aerosols in the southeastern U.S. Geophysical Research Letters. 44:8056-8064.   10.1002/2017GL074665   Abstract

During the 2013 Southern Oxidant and Aerosol Study, aerosol mass spectrometer measurements of submicron mass and single particles were taken at Look Rock, Tennessee. Their concentrations increased during multiday stagnation events characterized by low wind, little rain, and increased daytime isoprene emissions. Organic mass (OM) sources were apportioned as 42% “vehicle-related” and 54% biogenic secondary organic aerosol (bSOA), with the latter including “sulfate-related bSOA” that correlated to sulfate (r = 0.72) and “nitrate-related bSOA” that correlated to nitrate (r = 0.65). Single-particle mass spectra showed three composition types that corresponded to the mass-based factors with spectra cosine similarity of 0.93 and time series correlations of r > 0.4. The vehicle-related OM with m/z 44 was correlated to black carbon, “sulfate-related bSOA” was on particles with high sulfate, and “nitrate-related bSOA” was on all particles. The similarity of the m/z spectra (cosine similarity = 0.97) and the time series correlation (r = 0.80) of the “sulfate-related bSOA” to the sulfate-containing single-particle type provide evidence for particle composition contributing to selective uptake of isoprene oxidation products onto particles that contain sulfate from power plants.

Sanchez, KJ, Roberts GC, Calmer R, Nicoll K, Hashimshoni E, Rosenfeld D, Ovadnevaite J, Preissler J, Ceburnis D, O'Dowd C, Russell LM.  2017.  Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmospheric Chemistry and Physics. 17:9797-9814.   10.5194/acp-17-9797-2017   AbstractWebsite

Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)(1) and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (delta RF) by between 25 and 60Wm(-2). After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNCs) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, delta RF is no greater than 20Wm(-2) after accounting for cloud-top entrainment and up to 50Wm(-2) when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and delta RF is as high as 88Wm(-2), even high (> 30Wm(-2)) after accounting for cloud-top entrainment. This work demonstrates the need to take in situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.

Saliba, G, Saleh R, Zhao YL, Presto AA, Larnbe AT, Frodin B, Sardar S, Maldonado H, Maddox C, May AA, Drozd GT, Goldstein AH, Russell LM, Hagen F, Robinson AL.  2017.  Comparison of gasoline direct-injection (GDI) and port fuel injection (PFI) vehicle emissions: emission certification standards, cold-start, secondary organic aerosol formation potential, and potential climate impacts. Environmental Science & Technology. 51:6542-6552.   10.1021/acs.est.6b06509   AbstractWebsite

Recent increases in the Corporate Average Fuel Economy standards have led to widespread adoption of vehicles equipped with gasoline direct-injection (GDI) engines. Changes in engine technologies can alter emissions. To quantify these effects, we measured gas- and particle-phase emissions from 82 light-duty gasoline vehicles recruited from the California in-use fleet tested on a chassis dynamometer using the cold-start unified cycle. The fleet included 15 GDI vehicles, including 8 GDIs certified to the most-stringent emissions standard, superultra-low-emission vehicles (SULEV). We quantified the effects of engine technology, emission certification standards, and cold-start on emissions. For vehicles certified to the same emissions standard, there is no statistical difference of regulated gas-phase pollutant emissions between PFIs and GDIs. However, GDIs had, on average, a factor of 2 higher particulate matter (PM) mass emissions than PFIs due to higher elemental carbon (EC) emissions. SULEV certified GDIs have a factor of 2 lower PM mass emissions than GDIs certified as ultralow-emission vehicles (3.0 +/- 1.1 versus 6.3 +/- 1.1 mg/mi), suggesting improvements in engine design and calibration. Comprehensive organic speciation revealed no statistically significant differences in the composition of the volatile organic compounds emissions between PFI and GDIs, including benzene, toluene, ethylbenzene, and xylenes (BTEX). Therefore, the secondary organic aerosol and ozone formation potential of the exhaust does not depend on engine technology. Cold-start contributes a larger fraction of the total unified cycle emissions for vehicles meeting more-stringent emission standards. Organic gas emissions were the most sensitive to cold-start compared to the other pollutants tested here. There were no statistically significant differences in the effects of cold-start on GDIs and PFIs. For our test fleet, the measured 14.5% decrease in CO2 emissions from GDIs was much greater than the potential climate forcing associated with higher black carbon emissions. Thus, switching from PFI to GDI vehicles will likely lead to a reduction in net global warming.

Nicolas, JP, Vogelmann AM, Scott RC, Wilson AB, Cadeddu MP, Bromwich DH, Verlinde J, Lubin D, Russell LM, Jenkinson C, Powers HH, Ryczek M, Stone G, Wille JD.  2017.  January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. 8:15799.   10.1038/ncomms15799   Abstract

Over the past two decades the primary driver of mass loss from the West Antarctic Ice Sheet (WAIS) has been warm ocean water underneath coastal ice shelves, not a warmer atmosphere. Yet, surface melt occurs sporadically over low-lying areas of the WAIS and is not fully understood. Here we report on an episode of extensive and prolonged surface melting observed in the Ross Sea sector of the WAIS in January 2016. A comprehensive cloud and radiation experiment at the WAIS ice divide, downwind of the melt region, provided detailed insight into the physical processes at play during the event. The unusual extent and duration of the melting are linked to strong and sustained advection of warm marine air toward the area, likely favoured by the concurrent strong El Niño event. The increase in the number of extreme El Niño events projected for the twenty-first century could expose the WAIS to more frequent major melt events.

Yang, Y, Russell LM, Lou SJ, Liao H, Guo JP, Liu Y, Singh B, Ghan SJ.  2017.  Dust-wind interactions can intensify aerosol pollution over eastern China. Nature Communications. 8   10.1038/ncomms15333   AbstractWebsite

Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (+/- 0.05) ms(-1) averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies.

Kuang, XM, Scott JA, da Rocha GO, Betha R, Price DJ, Russell LM, Cocker DR, Paulson SE.  2017.  Hydroxyl radical formation and soluble trace metal content in particulate matter from renewable diesel and ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology. 51:147-158.   10.1080/02786826.2016.1271938   AbstractWebsite

Reactive oxygen species, including hydroxyl radicals generated by particles, play a role in both aerosol aging and PM2.5 mediated health effects. We assess the impacts of switching marine vessels from conventional diesel to renewable fuel on the ability of particles to generate hydroxyl radical when extracted in a simulated lung lining fluid or in water at pH 3.5, for samples of engine emissions from a research vessel when operating on ultra-low sulfur diesel ( ULSD) and hydrogenation-derived renewable diesel ( HDRD). Samples were collected during dedicated cruises in 2014 and 2015, including aged samples collected by re-intercepting the ship plume. After normalizing to particle mass, particles generated from HDRD combustion had slightly to significantly ( 5-50%) higher OH generation activity than those from ULSD, a difference that was statistically significant for some permutations of year/fuel/engine speed. Water soluble trace metal concentrations and fuel metal concentrations were similar, and compared to urban Los Angeles samples lower in soluble iron and manganese, but similar for most other trace metals. Because PM mass emissions were higher for HDRD, normalizing to fuel increased this difference. Freshly emitted PM had lower activity than the "plume chase" samples, and samples collected on the ship had lower activity than the urban reference. The differences in OH production correlated reasonably well with redox-active transition metals, most strongly with soluble manganese, with roles for vanadium and likely copper and iron. The results also suggest that atmospheric processing of fresh combustion particles rapidly increases metal solubility, which in turn increases OH production.

Betha, R, Russell LM, Sanchez KJ, Liu J, Price DJ, Lamjiri MA, Chen CL, Kuang XM, da Rocha GO, Paulson SE, Miller W, Cocker DR.  2017.  Lower NOx but higher particle and black carbon emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology. 51:123-134.   10.1080/02786826.2016.1238034   AbstractWebsite

Gas and particle emissions from R/V Robert Gordon Sproul were measured for ultra low sulfur diesel ( ULSD) and hydrogenation derived renewable diesel ( HDRD) during dedicated aerosol measurement cruises in 2014 ( 29 September-3 October) and 2015 ( 4-7 and 26-28 September). CO, CO2, and NOx were measured directly from the starboard stack from the 2-stroke, small bore, high speed engine, while number and mass size distributions for both particles and black carbon ( BC) were measured by intercepting the ship plume. Measurements at constant engine speeds ( 1600 rpm, 1300 rpm, 1000 rpm, and 700 rpm) had emission factors of CO ( EFCO) and NOx(EFNOx) that were lower by 20% and 13%, respectively, for HDRD compared to ULSD at 700 rpm. However, at 1600 rpm, EFCO and EFNOx were within one standard deviation for both ULSD ( EFCO: 4.0 +/- 0.1 g [kg-fuel](-1); EFNOx : 51 +/- 0.8 g [kg-fuel](-1)) and HDRD ( EFCO: 3.9 +/- 0.2 g [kg-fuel](-1); EFNOx : 51 +/- 2 g [kg-fuel](-1)). HDRD emission factors of particle number and mass concentrations were higher than ULSD by 46% to 107% and 36% to 150%, respectively, at 1600, 1300, and 1000 rpm, but the differences were smaller than the cycle-to-cycle variability at 700 rpm. BC mass emission factors were nearly 200% larger for 700, 1000, and 1300 rpm for HDRD compared to ULSD, but the mass differences were smaller than cycle-to-cycle variability at 1600 rpm. BC mass size distributions showed that the peak diameter of the BC mass mode for ULSD ( similar to 120 nm) is about 20 nm larger than for HDRD ( similar to 100 nm), even though the particle mass and number size distributions are quite similar.

Lonsdale, CR, Hegarty JD, Cady-Pereira KE, Alvarado MJ, Henze DK, Turner MD, Capps SL, Nowak JB, Neuman A, Middlebrook AM, Bahreini R, Murphy JG, Markovic MZ, VandenBoer TC, Russell LM, Scarino AJ.  2017.  Modeling the diurnal variability of agricultural ammonia in Bakersfield, California, during the CalNex campaign. Atmospheric Chemistry and Physics. 17:2721-2739.   10.5194/acp-17-2721-2017   AbstractWebsite

NH3 retrievals from the NASA Tropospheric Emission Spectrometer (TES), as well as surface and aircraft observations of NH3(g) and submicron NH4(p), are used to evaluate modeled concentrations of NH3(g) and NH4(p) from the Community Multiscale Air Quality (CMAQ) model in the San Joaquin Valley (SJV) during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. We find that simulations of NH3 driven with the California Air Resources Board (CARB) emission inventory are qualitatively and spatially consistent with TES satellite observations, with a correlation coefficient (r(2)) of 0.64. However, the surface observations at Bakersfield indicate a diurnal cycle in the model bias, with CMAQ overestimating surface NH3 at night and underestimating it during the day. The surface, satellite, and aircraft observations all suggest that daytime NH3 emissions in the CARB inventory are underestimated by at least a factor of 2, while the nighttime overestimate of NH3(g) is likely due to a combination of overestimated NH3 emissions and underestimated deposition. Running CMAQ v5.0.2 with the bi-directional NH3 scheme reduces NH3 concentrations at night and increases them during the day. This reduces the model bias when compared to the surface and satellite observations, but the increased concentrations aloft significantly increase the bias relative to the aircraft observations. We attempt to further reduce model bias by using the surface observations at Bakers-field to derive an empirical diurnal cycle of NH3 emissions in the SJV, in which nighttime and midday emissions differ by about a factor of 4.5. Running CMAQv5.0.2 with a bi-directional NH3 scheme together with this emissions diurnal profile further reduces model bias relative to the surface observations. Comparison of these simulations with the vertical profile retrieved by TES shows little bias except for the lowest retrieved level, but the model bias relative to flight data aloft increases slightly. Our results indicate that both diurnally varying emissions and a bi-directional NH3 scheme should be applied when modeling NH3(g) and NH4(p) in this region. The remaining model errors suggest that the bi-directional NH3 scheme in CMAQ v5.0.2 needs further improvements to shift the peak NH3 land-atmosphere flux to earlier in the day. We recommend that future work include updates to the current CARB NH3 inventory to account for NH3 from fertilizer application, livestock, and other farming practices separately; adding revised information on crop management practices specific to the SJV region to the bi-directional NH3 scheme; and top-down studies focused on determining the diurnally varying biases in the canopy compensation point that determines the net land-atmosphere NH3 fluxes.

Price, DJ, Chen CL, Russell LM, Lamjiri MA, Betha R, Sanchez K, Liu J, Lee AKY, Cocker DR.  2017.  More unsaturated, cooking-type hydrocarbon-like organic aerosol particle emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology. 51:135-146.   10.1080/02786826.2016.1238033   AbstractWebsite

The aerosol particle emissions from R/V Robert Gordon Sproul were measured during two 5-day research cruises ( 29 September-3 October 2014; 4-7 and 26-28 September 2015) at four engine speeds ( 1600 rpm, 1300 rpm, 1000 rpm, and 700 rpm) to characterize the emissions under different engine conditions for ultra low sulfur diesel ( ULSD) and hydrogenation derived renewable diesel ( HDRD) fuels. Organic aerosol composition and mass distribution were measured on the aft deck of the vessel directly behind the exhaust stack to intercept the ship plume. The ship emissions for both fuels were composed of alkane-like compounds ( H/C = 1.94 +/- 0.003, O/C = 0.04 +/- 0.001, CnH2n) with mass spectral fragmentation patterns consistent with hydrocarbon-like organic aerosol ( HOA). Single-particle mass spectra from emissions for both fuels showed two distinct HOA compositions, with one HOA type containing more saturated alkane fragments ( CnH2nC1) and the other HOA type containing more monounsaturated fragments ( CnH2n-1). The particles dominated by the CnH2n-1 fragment series are similar to mass spectra previously associated with cooking emissions. More cooking-type organic particles were observed in the ship emissions for HDRD than for ULSD ( 45% and 38%, respectively). Changes in the plume aerosol composition due to photochemical aging in the atmosphere were also characterized. The higher fraction of alkene or aromatic ( CnH2n-m, m >= 3) fragments in aged compared to fresh plume emissions suggest that some of the semivolatile alkane-like components partition back to the vapor phase as dilution increases, while alkene or aromatic hydrocarbons contribute more mass to the particle phase due to continuing photochemical oxidation and subsequent condensation from the vapor phase.

Shingler, T, Sorooshian A, Ortega A, Crosbie E, Wonaschütz A, Perring AE, Beyersdorf A, Ziemba L, Jimenez JL, Campuzano-Jost P, Mikoviny T, Wisthaler A, Russell LM.  2016.  Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements. Journal of Geophysical Research: Atmospheres. 121:13,661-13,677.   10.1002/2016JD025471   AbstractWebsite

This study reports a detailed set of ambient observations of optical/physical shrinking of particles from exposure to water vapor with consistency across different instruments and regions. Data have been utilized from (i) a shipboard humidified tandem differential mobility analyzer during the Eastern Pacific Emitted Aerosol Cloud Experiment in 2011, (ii) multiple instruments on the NASA DC-8 research aircraft during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys in 2013, and (iii) the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe during ambient measurements in Tucson, Arizona, during summer 2014 and winter 2015. Hygroscopic growth factor (ratio of humidified-to-dry diameter, GF = Dp,wet/Dp,dry) and f(RH) (ratio of humidified-to-dry scattering coefficients) values below 1 were observed across the range of relative humidity (RH) investigated (75–95%). A commonality of observations of GF and f(RH) below 1 in these experiments was the presence of particles enriched with carbonaceous matter, especially from biomass burning. Evidence of externally mixed aerosol, and thus multiple GFs with at least one GF < 1, was observed concurrently with f(RH) < 1 during smoke periods. Possible mechanisms responsible for observed shrinkage are discussed and include particle restructuring, volatilization effects, and refractive index modifications due to aqueous processing resulting in optical size modification. To further investigate ambient observations of GFs and f(RH) values less than 1, it is recommended to add an optional prehumidification bypass module to hygroscopicity instruments, to preemptively collapse particles prior to controlled RH measurements.

Yang, Y, Russell LM, Lou S, Lamjiri MA, Liu Y, Singh B, Ghan SJ.  2016.  Changes in Sea Salt Emissions Enhance ENSO Variability. Journal of Climate. 29:8575-8588.   10.1175/jcli-d-16-0237.1   AbstractWebsite

Two 150-yr preindustrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Nino-Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Nino events compared to those during La Nina events. These changes in AOD further increase (decrease) radiative fluxes into the atmosphere by +0.2 (-0.4) W m(-2) over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2-0.4K over the tropical eastern (western) Pacific Ocean during El Nino compared to La Nina events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Nino and La Nina events, which is a result of heating anomalies. Owing to variations in sea salt emissions, the convective precipitation is enhanced by 0.6-1.2 mm day(-1) over the tropical central-eastern Pacific Ocean and weakened by 0.9-1.5 mm day(-1) over the Maritime Continent during El Nino compared to La Nina events, enhancing the precipitation variability over the tropical Pacific.

Xu, L, Cameron-Smith P, Russell LM, Ghan SJ, Liu Y, Elliott S, Yang Y, Lou S, Lamjiri MA, Manizza M.  2016.  DMS role in ENSO cycle in the tropics. Journal of Geophysical Research: Atmospheres. 121:13,537-13,558.   10.1002/2016JD025333   AbstractWebsite

We examined the multiyear mean and variability of dimethyl sulfide (DMS) and its relationship to sulfate aerosols, as well as cloud microphysical and radiative properties. We conducted a 150 year simulation using preindustrial conditions produced by the Community Earth System Model embedded with a dynamic DMS module. The model simulated the mean spatial distribution of DMS emissions and burden, as well as sulfur budgets associated with DMS, SO2, H2SO4, and sulfate that were generally similar to available observations and inventories for a variety of regions. Changes in simulated sea-to-air DMS emissions and associated atmospheric abundance, along with associated aerosols and cloud and radiative properties, were consistently dominated by El Niño–Southern Oscillation (ENSO) cycle in the tropical Pacific region. Simulated DMS, aerosols, and clouds showed a weak positive feedback on sea surface temperature. This feedback suggests a link among DMS, aerosols, clouds, and climate on interannual timescales. The variability of DMS emissions associated with ENSO was primarily caused by a higher variation in wind speed during La Niña events. The simulation results also suggest that variations in DMS emissions increase the frequency of La Niña events but do not alter ENSO variability in terms of the standard deviation of the Niño 3 sea surface temperature anomalies.

Xu, L, Russell LM, Burrows SM.  2016.  Potential sea salt aerosol sources from frost flowers in the pan-Arctic region. Journal of Geophysical Research-Atmospheres. 121:10840-10856.   10.1002/2015jd024713   AbstractWebsite

In order to better represent observed wintertime aerosol mass and number concentrations in the pan-Arctic (60 degrees N-90 degrees N) region, we implemented an observationally based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM, version 1.2.1). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic climate. Results show that frost flower salt emissions increase the modeled surface sea salt aerosol mass concentration by roughly 200% at Barrow and 100% at Alert and accumulation-mode number concentration by about a factor of 2 at Barrow and more than a factor of 10 at Alert in the winter months when new sea ice and frost flowers are present. The magnitude of sea salt aerosol mass and number concentrations at the surface in Barrow during winter simulated by the model configuration that includes this parameterization agrees better with observations by 48% and 12%, respectively, than the standard CESM simulation without a frost flower salt particle source. At Alert, the simulation with this parameterization overestimates observed sea salt aerosol mass concentration by 150% during winter in contrast to the underestimation of 63% in the simulation without this frost flower source, while it produces particle number concentration about 14% closer to observation than the standard CESM simulation. However, because the CESM version used here underestimates transported sulfate in winter, the reference accumulation-mode number concentrations at Alert are also underestimated. Adding these frost flower salt particle emissions increases sea salt aerosol optical depth by 10% in the pan-Arctic region and results in a small cooling at the surface. The increase in salt aerosol mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration at supersaturation of 0.1%, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing at the top of the atmosphere by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 1.8Wm(-2) in the pan-Arctic under the present-day climate. This regional average longwave warming due to the presence of clouds attributed to frost flower sea salts is roughly half of previous observed surface longwave fluxes and cloud-forcing estimates reported in Alaska, implying that the longwave enhancement due to frost flower salts may be comparable to those estimated for anthropogenic aerosol emissions. Since the potential frost flower area is parameterized as the maximum possible region on which frost flowers grow for the modeled atmospheric temperature and sea ice conditions and the model underestimates the number of accumulation-mode particles from midlatitude anthropogenic sources transported in winter, the calculated aerosol indirect effect of frost flower sea salts in this work can be regarded an upper bound.

Lou, SJ, Russell LM, Yang Y, Xu L, Lamjiri MA, DeFlorio MJ, Miller AJ, Ghan SJ, Liu Y, Singh B.  2016.  Impacts of the East Asian Monsoon on springtime dust concentrations over China. Journal of Geophysical Research-Atmospheres. 121:8137-8152.   10.1002/2016jd024758   AbstractWebsite

We use 150year preindustrial simulations of the Community Earth System Model to quantify the impacts of the East Asian Monsoon strength on interannual variations of springtime dust concentrations over China. The simulated interannual variations in March-April-May (MAM) dust column concentrations range between 20-40% and 10-60% over eastern and western China, respectively. The dust concentrations over eastern China correlate negatively with the East Asian Monsoon (EAM) index, which represents the strength of monsoon, with a regionally averaged correlation coefficient of -0.64. Relative to the strongest EAM years, MAM dust concentrations in the weakest EAM years are higher over China, with regional relative differences of 55.6%, 29.6%, and 13.9% in the run with emissions calculated interactively and of 33.8%, 10.3%, and 8.2% over eastern, central, and western China, respectively, in the run with prescribed emissions. Both interactive run and prescribed emission run show the similar pattern of climate change between the weakest and strongest EAM years. Strong anomalous northwesterly and westerly winds over the Gobi and Taklamakan deserts during the weakest EAM years result in larger transport fluxes, and thereby increase the dust concentrations over China. These differences in dust concentrations between the weakest and strongest EAM years (weakest-strongest) lead to the change in the net radiative forcing by up to -8 and -3Wm(-2) at the surface, compared to -2.4 and +1.2Wm(-2) at the top of the atmosphere over eastern and western China, respectively.

Yang, Y, Russell LM, Xu L, Lou SJ, Lamjiri MA, Somerville RCJ, Miller AJ, Cayan DR, DeFlorio MJ, Ghan SJ, Liu Y, Singh B, Wang HL, Yoon JH, Rasch PJ.  2016.  Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research-Atmospheres. 121:6321-6335.   10.1002/2015jd024503   AbstractWebsite

We use three 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of El Nino-Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW). Compared to recent observations from the Clouds and the Earth's Radiant Energy System data set, the model simulation successfully reproduces larger variations of CRESW and CRELW over the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects. Simulated cooling (warming) effects from CRESW (CRELW) are strongest over the tropical western and central Pacific Ocean during warm ENSO events, with the largest difference between 20 and 60 W m(-2), with weaker effects of 10-40 W m(-2) over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in midlevel and high cloud fractions each account for approximately 20-50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60 degrees S and 60 degrees N. The variation of low cloud fraction contributes to most of the variations of CRESW over the midlatitude oceans. Variations in natural aerosol concentrations explained 10-30% of the variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions, and the tropical Indian Ocean. Changes in natural aerosol emissions and concentrations enhance 3-5% and 1-3% of the variations of cloud radiative effects averaged over the tropics.

Sanchez, KJ, Russell LM, Modini RL, Frossard AA, Ahlm L, Corrigan CE, Roberts GC, Hawkins LN, Schroder JC, Bertram AK, Zhao R, Lee AKY, Lin JJ, Nenes A, Wang Z, Wonaschutz A, Sorooshian A, Noone KJ, Jonsson H, Toom D, Macdonald AM, Leaitch WR, Seinfeld JH.  2016.  Meteorological and aerosol effects on marine cloud microphysical properties. Journal of Geophysical Research-Atmospheres. 121:4142-4161.   10.1002/2015jd024595   AbstractWebsite

Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 mu m). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

Kieber, DJ, Keene WC, Frossard AA, Long MS, Maben JR, Russell LM, Kinsey JD, Tyssebotn IMB, Quinn PK, Bates TS.  2016.  Coupled ocean-atmosphere loss of marine refractory dissolved organic carbon. Geophysical Research Letters. 43:2765-2772.   10.1002/2016GL068273   Abstract

The oceans hold a massive quantity of organic carbon, nearly all of which is dissolved and more than 95% is refractory, cycling through the oceans several times before complete removal. The vast reservoir of refractory dissolved organic carbon (RDOC) is a critical component of the global carbon cycle that is relevant to our understanding of fundamental marine biogeochemical processes and the role of the oceans in climate change with respect to long-term storage and sequestration of atmospheric carbon dioxide. Here we show that RDOC includes surface-active organic matter that can be incorporated into primary marine aerosol produced by bursting bubbles at the sea surface. We propose that this process will deliver RDOC from the sea surface to the atmosphere wherein its photochemical oxidation corresponds to a potentially important and hitherto unknown removal mechanism for marine RDOC.

Yang, Y, Russell LM, Lou SJ, Liu Y, Singh B, Ghan SJ.  2016.  Rain-aerosol relationships influenced by wind speed. Geophysical Research Letters. 43:2267-2274.   10.1002/2016gl067770   Abstract

Aerosol optical depth (AOD) has been shown to correlate with precipitation rate (R) in recent studies. The R-AOD relationships over oceans are examined in this study using 150year simulations with the Community Earth System Model. Through partial correlation analysis, with the influence of 10m wind speed removed, R-AOD relationships exert a change from positive to negative over the midlatitude oceans, indicating that wind speed makes a large contribution to the relationships by changing the sea-salt emissions. A simulation with prescribed sea-salt emissions shows that wind speed leads to increasing R by +0.99mmd(-1) averaged globally, offsetting 64% of the wet scavenging-induced decrease between polluted and clean conditions, defined according to percentiles of AOD. These demonstrate that wind speed is one of the major drivers of R-AOD relationships. Relative humidity at 915hPa can also result in the positive relationships; however, its role is smaller than that of wind speed.

DeFlorio, MJ, Goodwin ID, Cayan DR, Miller AJ, Ghan SJ, Pierce DW, Russell LM, Singh B.  2016.  Interannual modulation of subtropical Atlantic boreal summer dust variability by ENSO. Climate Dynamics. 46:585-599.   10.1007/s00382-015-2600-7   Abstract

Dust variability in the climate system has been studied for several decades, yet there remains an incomplete understanding of the dynamical mechanisms controlling interannual and decadal variations in dust transport. The sparseness of multi-year observational datasets has limited our understanding of the relationship between climate variations and atmospheric dust. We use available in situ and satellite observations of dust and a century-length fully coupled Community Earth System Model (CESM) simulation to show that the El Nino-Southern Oscillation (ENSO) exerts a control on North African dust transport during boreal summer. In CESM, this relationship is stronger over the dusty tropical North Atlantic than near Barbados, one of the few sites having a multi-decadal observed record. During strong La Nina summers in CESM, a statistically significant increase in lower tropospheric easterly wind is associated with an increase in North African dust transport over the Atlantic. Barbados dust and Pacific SST variability are only weakly correlated in both observations and CESM, suggesting that other processes are controlling the cross-basin variability of dust. We also use our CESM simulation to show that the relationship between downstream North African dust transport and ENSO fluctuates on multidecadal timescales and is associated with a phase shift in the North Atlantic Oscillation. Our findings indicate that existing observations of dust over the tropical North Atlantic are not extensive enough to completely describe the variability of dust and dust transport, and demonstrate the importance of global models to supplement and interpret observational records.